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Reading on this talk

• www.stat.rice.edu/~riedi
• This talk
• Intro for the “untouched mind”

– Explicit computations on Binomial

• Monograph on “Multifractal processes”
– Multifractal formalism (proofs, references)
– Multifractal subordination (warping)

• Papers, links
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Why Cascades

Turbulence: models wanted

• Kolmogorov 1941 :   
< [v(x+r)-v(x)]q > ~ r q/3

• Kolmogorov 1962 :   
< [v(x+r)-v(x)]q > ~ rH(q)

• …and beyond
Courtesy P. Chainais
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Measured Data

• Networks

• Geophysics

• WWW

• Stock Markets
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Multifractal Analysis

Toy Example
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The Toy: Binomial Cascade

• Start with unit mass
1

1-pp

0

Mass re-distribution

½ 1

0 ½ 1

2(1-p)
2p

• Converges to measure μ

• Redistribute uniformly 
portion p <½ to the left
portion 1-p to the right

• Iterate
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Multifractal Spectrum
• Oscillate ~ |t|α local strength α α=.7 α=.9 α=.8

• Dim(Ea): Spectrum 
prelevance of α

a

Dim(Ea)
• Collect points t with same α : 
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Binomial

We take dyadic partition:

Range of exponents:
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“Typical” exponents  

t=0, t=1 seem  “atypical”.
Intuition: for a “typical” t:

Rigorously: Law of Large Numbers
• Binary digits єk are independent, P[єk=0]= P[єk=1]= ½:
• t is uniformly distributed (i.e., with Lebesgue measure L)

•

• “Typical” exponent: 
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A first point on the Spectrum  

Conclusion: 
•

• Mass Distribution Principle 
(Lebesgue measure L  is 1-dim Hausdorff measure)

“Where” and “how many” are the other exponents?

• Choose digits “unfairly”, e.g., prefer 1 over 0.
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Other exponents  

The measure μ prefers 1 over 0 (ratio 1-p to p). 
Intuitive:

Rigorously: Law of Large Numbers using μ
• Binary digits є are independent, P[єk=0]=p, P[єk=1]= 1-p:

• t is distributed according to μ
•

• μ-typical exponent
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A second point on the Spectrum

Conclusion: 
•

• Mass Distribution Principle 

(Hausdorff dimension of μ? It is a1<1!)

a1

Dim(Ea1)=a1

a0
a∞ a-∞

Dim(Ea0)=1

1

1

Lebesgue
measure
selects a0

μ selects a1

• All exponents: Inspiration from Large Deviation Theory
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Large Deviations

and the 
Multifractal Formalism
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Box Spectrum

• Notation:

[www.stat.rice.edu/~riedi]

• Thm: we always have

• Beware the folklore: f(a) is NOT the box-dim of Ea
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Legendre spectrum

• Notation: partition sum and function

• Thm: we always have
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Legendre spectrum

• Thm: provided αn(t) are bounded we have

• Proof idea: steepest ascent (large deviations)

– Thus:

– τ is concave, non-decreasing, differentiable with exceptions

– Recover f=f** at a=τ’(q) using lower semi-continuity
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Legendre transform 101

• Elementary calculus:

– Tangent of slope a to τ(q)
– Intersection with ordinate yields  -τ*(a)
– Dual holds slope a slope q



Rudolf Riedi Rice University                                    stat.rice.edu/~riedi

Binomial Spectrum

continued
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Partition function of the Binomial

• (Upper) envelop of dim(Ea):
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Insight from Large Deviations
• From steepest ascent:

• Dominant terms in Sn(q), for fixed q, are the ones with

• …and vice versa: these terms contribute such that

For the Binomial these correspond 
to mass re-distribution in ratio pq to (1-p)q
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Locating the exponents  
Fix q. 

Consider the measure μq defined as μ but with mass ratio pq to 
(1-p)q. Intuitively, we have then:

Rigorously: Law of Large Numbers using μq
• Binary digits є: indep, P[єk=0]=pq2τ(q), P[єk=1]= (1-p)q2τ(q)

• t is distributed according to μq
•

• μ-typical exponent
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Completing the Spectrum  

Conclusion: 
•
•

• Hausdorff dimension of μq:

• Mass Distribution Principle
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Lessons

• Points with exponent logμ(I(t))/log|I(t)| ~ a=τ’(q) 
– Are concentrated on the support of μq
– Dominate the partition sum Sn(q)

• Partition function allows to bound/estimate dim(Ea)

slope a slope q

a

q
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Random Cascades

A further multifractal envelop
Convergence and Degeneracy 
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Multifractal Spectra and Randomness

• ΔIn(t): oscillation indicator for process or measure
• Pathwise

• Sn(q) is q-th moment estimator.
• Replace by true moment: 

• …analytically easier to handle and often sufficient
• T(q) is concave like τ(q), but NOT always increasing
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Pathwise and deterministic envelop

• Lemma: With probability one

• Cor: 

[Proof: www.stat.rice.edu/~riedi]

Quenched Average Annealed Average

• Weaker result from Chebichev inequality:

• Material science: free energy is “self-averaging” iff
quenched and annealed averages are equal. 
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Multifractal Envelops

• Almost surely, for all a:

• Holds always provided use same ΔIn in all spectra

• Choice of scales In
– In is here dyadic, could be any sub-exponential

– This could affect/change f, τ and/or T due to boundary effects
– Robust: ΔIn = oscillation in In and its neighbor intervals

• Choice of oscillation indicator ΔIn
– For true Hoelder regularity ΔIn = max increment “around” In

– ΔIn = Wavelet coefficient: only a proxy to Hoelder regularity!
– For measures supported on [0,1]:                   gives Hoelder!



Rudolf Riedi Rice University                                    stat.rice.edu/~riedi

Multifractal Envelops

• Almost surely, for all a:

• Special feature:
– If a property of 

“bounded total variation”
holds then the spectrum f 
touches the bi-sector:

slope 1
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Multifractal Envelops

• Almost surely, for all a:

• Terminology:
– Multifractal formalism “holds” if 

• dim(Ea)=f(a)=τ*(a) 
with your preferred oscillation indicators ΔIn, 
e.g., Holder exponent in Ea, wavelet decay in f(a).
[First step: show T is same for Holder and wavelets.]

– Falconcer: “A concise definition of a multifractal tends to be 
avoided.”

– Others: “An object is multifractal if the formalism holds for it.”
– Others: “An object is multifractal if it has more than one 

singularity exponent”. (not mono-fractal)
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Multifractals
and classical regularity
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Besov spaces

• For oscillation indicator from wavelets:

• Proof: use wavelet coefficients Cj,k= ΔIj(k2j) and 
equivalent Besov norm
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Kolmogorov
• Thm [Kolmogorov]:

– If E[ | A(s)-A(t) |b ] < C | s-t |1+d then almost all paths of A 
are of (global) Holder-continuity for all h < d/b, 

– i.e., for all h < T(q)/q .

• The best such h is min(a : T*(a)>0).
– T(q)/q = slope of tangent through the origin.

h
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Binomial Spectrum

continued
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Binomial with Random Multipliers

• Random re-distribution
• Multipliers Independent 

between scales

• Conservative:

1

1-MM

0

Conservative re-distribution

½ 1

0 ½ 1

2(1-M)
2M

1

M’M

0

Independent re-distribution

½ 1

0 ½ 1

2M’
2M

• Conservation is too restrictive 
for stationarity!

• “Martingale de Mandelbrot”:
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Convergence of Random Binomial

• Conservative:

–

– For all m>n

– Thus converges to

1

1-MM

0

Conservative re-distribution

½ 1

0 ½ 1

2(1-M)

2M
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Convergence of Random Binomial

• “Martingale de Mandelbrot”:

– A price to pay towards stationarity

–

– Martingale: For all m>n

– Thus converges almost surely (but may degenerate) 
– We have 
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Envelope for Random Binomial

• By independence of multipliers
– Martingale of Mandelbrot:

– Conservative: similar
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Kahane-Peyriere theory for the 
Martingale of Mandelbrot

• Martingale “degenerates”
– iff μ([0,1])=0 almost surely zero

– iff E μ([0,1])=0
– iff T’(1)<=0

• Intuition:
– T’(1)= a1 = dimension of the carrier of μ.
– If T’(1)>0 then 

• ∃q>1 with T(q)>0 

• μ converges in Lq
•
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Multifractal formalism holds

• Thm for random binomial [Barral, Arbeiter-Patschke, Falconer]:
– Set ΔIn = μ(In).
– Assume M has a finite moment of some negative order
– Then, with probability 1: for all a such that T*(a)>0

• Note: 
– T*(a)>0 means a=T’(q) with q limited by tangents through 

the origin: T’(q)=T(q)/q.

– Little known in general for other a …or q! Possible: τ(q)>T(q)
– Proofs: Use Mass distortion Principle with factors Mq
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Wavelets for the Binomial

• Compactly supported wavelet 
– ΔIn =wavelet coefficient corresponding to In
– ΔIn same rescaling property as measure itself
– Same T(q)
– Multifractal formalism holds
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Toy examples

Brownian MotionWhite noise Cascade 
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Log-Normal Binomial

• Deterministic envelope is a parabola: [Mandelbrot]

• Zeros: q=1, q=qcrit

• Non-Degeneracy:  

• Spectrum is parabola as well 

• Partition function τ(q) is non-decreasing,

• thus τ(q) > T(q) (at least) for q>(1+qcrit)/2

1 qcrit
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Multifractal Product of Pulses
together with 

I. Norros and P. Mannersalo
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Network Traffic is Multifractal

• Visually striking 
• Scaling of impressive quality

(Levy Vehel & RR ’96, 
Norros & Mannersalo ’97, 
Willinger et al ‘98)

• Statistical models: 
– Binomial cascades with

scale dependent multipliers
(Crouse & RR ’98, Willinger et al ‘98)

• Not stationary!
– Cumbersome for statistics
– and probability (Queueing)

Auck2000

Cascade
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Multifractal paradigm
Multiplicative Processes:
– From redistributing mass to multiplying pulses

Binomial Cascade
– Λn(s) is constant on dyadic

intervals

– Conservative:
Λn(2k/2n) + Λn((2k+1)/2n) =2

– Martingale de Mandelbrot:
E Λn(s) = 1

– Not stationary
0 1/4 1/2

t
1

1

1
2M

Λ1(s)
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Multifractal paradigm
• Multiplicative Processes:

• Stationary Cascade
– Λn(s) is stationary
– Conservation: 

EΛn(t) =1
– “self-similarity”:

Λn(s) =d Λ1(sbn)
0 b/4 b/2

t
1

1

1

Λ3

Λ2

Λ1

b
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Parameters and Scaling

• Parameter estimation
– Λi(s): i.i.d. values with Poisson arrivals (λi): 
– Z(s) = log [ Λ1(s) Λ2(s)… Λn(s) ]

– Cov(Z(t)Z(t+s))= Σi=1..n exp(-λis)Var Λi(s)

• Performance of predictors / simulations

• Multifractal Envelope
(with Norros and Mannersalo)

T(q)=q-1-log2E[Λq]

Λ1 Λ2 … Λn
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Interlude 

Self-similar processes
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Statistical Self-similarity
• Self-similarity: canonical form

– B(at) =fdd C(a) B(t)       B: process, C: scale function

– Iterate: B(abt) =fdd C(a)C(b) B(t)
– C(a)C(b)=C(ab)  

C(a) = aH :  Powerlaw is default

• H-self-similar:

B(at) =fdd aH B(t)

• Examples
– Gaussian: fractional Brownian motion BH(t) is unique H-self-

similar Gaussian process with stationary increments.
– Stable: not unique in general, a=1/H: Levy motion



Rudolf Riedi Rice University                                    stat.rice.edu/~riedi

Self-similar Processes
• What do they model?

– Long Range Dependence (LRD)
– E[ {B(k+1)-B(k)} B(1) ] ~ k2H-2 (½ < H <1) 

– Sustained excursions above/below the mean

• Different from (finite order) linear models
– Auto-Regressive
– ARMA
– (G)ARCH
– Exponential decay of correlations

• Corresponds to infinite order AR models
– FARIMA
– FIGARCH

fBm(t) = -∞∫t K(t,s) dW(s)
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Multifractal Subordination

Processes with 
multifractal oscillations
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Multifractal time warp

BH(M(t)): BH fBm, dM independent measure 

A versatile model

– M(t): Multifractal
Time change
Trading time

– B: Brownian motion
Gaussian fluctuations

dM(t)

B(M(t))
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Hölder regularity

• Levy modulus of continuity:
– With probability one for all t

– Thus, exponent gets stretched:

– and spectrum gets squeezed:
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Multifractal formalism for BH(M(t))

• Conditioning on M one finds:

– thus

– which confirms the stretched exponent:

– and matches with warp formula before:

– If the formalism holds for M, then also for BH(M(t))
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Estimation: Wavelets decorrelate

• Wjk = ∫ ψjk(t) B(M(t)) dt
N: number of vanishing moments

• E[Wjk Wjm ] 
= ∫ ∫ Ψjk(t) Ψjm(s) E[B(M(t)) B(M(s))] dt ds
= ∫ ∫ Ψjk(t) Ψjm(s) E[|M(t) - M(s)|2H] dt ds

~ O( |k-m|T(2H) +1 – 2N )  ( |k-m| ∞)

(with P. Goncalves)
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Multifractal Estimation for B(M(t))

• Weak Correlations of Wavelet-Coefficients:
(with P. Goncalves)

Haar Daubechies2

• Improved estimator due to weak correlations
• Multifractal Spectrum

M(t+s) - M(t) ~ sa(t)

B(t+u) - B(t)  ~ uH (∀ t)

B(M(t+s)) – B(M(t)) ~ sH*a(t)

Estimation 
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From 
Multiplicative Cascades

to 
Infinitely Divisible Cascades

with
P. Chainais and P. Abry

Independent work:
Castaing, Schmidt, 

Barral-Mandelbrot, Bacry-Muzy
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Adapting to the real world
Real world data 
• can deviate from powerlaws: traffic
• has no preference for dyadic scales
Lukacs: if the data does not fit to the 

model then too bad for the data.
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Experimental results

H(q) n(a): non-powerlaw

Courtesy P. Chainais
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Beyond Self-similarity

• Self-similarity revisited:
– B(at) =d C(a) B(t)       B: process, C: scale function
– B(abt) =d C(a)C(b) B(t)
– C(a)C(b)=C(ab)  C(a) = aH

– E[| B(an) |q] = c(q) (aqH)n

– linear in q (mono-fractal)
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Beyond Self-similarity
• Self-similarity revisited:

– B(at) =d C(a) B(t)       B: process, C: scale function
– B(abt) =d C(a)C(b) B(t)
– C(a)C(b)=C(ab)  C(a) = aH

– E[| B(an) |q] = c(q) (aqH)n

– linear in q (mono-fractal)

• More flexible rescaling “Ansatz”:
– C=C(a,t) ?  : non-stationary increments
– C=independent r.v. for every re-scaling :
– X(a…at)= X(ant) = C1(a)…Cn(a) X(t): multiplicative
– E[| X(an) |q] = c(q) E[| C(a) |q]n 

– non-linear in q;  powerlaw
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Infinitely divisible scaling

• Multifractal scaling reduces to self-similarity if T is 
linear in q. (sometimes called mono-fractal)

• IDC reduces to multifractal scaling if n(δ)=-log(δ)
• In general n(δ) gives the speed of the cascade
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Geometry of Binomial Pulses

• Time-Scale plane: codes 
shape of pulses
– Position (T=center)
– Size (R=length)

Time

Position
S

ize
 

Scale

For Binomial:
Strict dyadic 
geometry

T

R
Pulses: 
Pi(t) = Wi if |t-ti|<ri/2 

1    else
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Stationary geometry

Randomize Positions
and Sizes

Large Scale Pulses Medium Scale Pulses
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Compound Poisson Cascade

Cascade Process:

Poisson points (ti , ri ) in time-scale plane with marks Wi

Cone of influence at t 
C(r,t)

• Poisson Cascades exhibit scaling properties akin to IDC scaling

r



Rudolf Riedi Rice University                                    stat.rice.edu/~riedi

M(C(t))

Cascade and AR processes
• Continuous version (IDC):

– M is an infinitely divisible measure

• Classic theory to be exploited: 
– AR-type processes

– kernel estimate of the random measure dM
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Cascades: Invariance and scaling

C(t)Cb(t)

Cr
b(t)

Infinitely divisible nature 
and scaling of the cascade:

r

b

Poisson Cascade has re-scaling properties;
in scale invariant case: akin to Product of Processes

Rescaled version of Qr/b
in the scale-invariant case only!
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Multifractal scaling

• Multifractal formalism holds in self-
similar case [Barral-Mandelbrot]

• Infinitely Divisible Scaling

– powerlaw only if m(C(t,*)) = -log(t)
– for IDC in self-similar case [Bacry-Muzy,Barral]

– for CPC and log-normal IDC in certain non-
powerlaw cases [Chainais-R-Abry]
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Simulations

• Stationary Cascade:

• Non-powerlaw scaling
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“Never happy”: More flexibility

• Better control of scaling

• Wider range of known non-powerlaw scaling

• Higher dimensions: anisotropy
– “As expected” in generic cases [Falconer, Olsen]

– Formalism may break if directional preferences 
[McMullen, Bedford, Kingman, R]
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Overall Lessons
• Multifractal spectrum <-> regularity

– Besov spaces
– Global Hoelder regularity

• Powerful modeling via multiplication through scales
– Poisson product of Pulses
– Multifractal warping
– Degeneracy: price to pay for stationarity

• Estimation via wavelets
– Multifractal envelopes 

• numerical τ(q), 
• Analytical T(q)

– Choice of wavelet, of order q
– Interpretation: what kind of spectrum did you estimate 

• Hoelder exponent
• Wavelet decay
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To take away

• Cascades matured to 
versatile multifractal models

• There remains much to do.
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Reading on this talk

• www.stat.rice.edu/~riedi
• This talk 
• Intro for the “untouched mind”

– Explicit computations on Binomial

• Monograph on “Multifractal processes”
– Multifractal formalism (proofs)
– Multifractal subordination (warping)

• Papers, links
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