

A non-parametric wavelet-based estimator of tails and Internet Traffic

Rolf Riedi

with Paulo Goncalves, INRIA Rhone-Alpes

Hailuoto, June 2005

Rudolf Riedi Rice University

stat.rice.edu/~riedi

A non-parametric wavelet-based estimator of tails and model identification

Rolf Riedi

with Paulo Goncalves, INRIA Rhone-Alpes

Hailuoto, June 2005

Rudolf Riedi Rice University

stat.rice.edu/~riedi

Diverging Moments

Diverging moments: $\mathbb{E}|X|^q = \infty$

bear on...

- Estimation of tails: $P[|X| > x] \sim x^{-\alpha}$
- Estimators per se: $(X_1^2 + ... X_n^2)/n$

Asymptotic normality

Moments and Tails

• ... not so much an issue of ``convergence" to Pareto

Moments and characteristic fct

• Characteristic function:

$$\phi(u) = \mathbb{E}[\exp(iuX)]$$

- Moments 101: If $E|X|^n$ is exists then $\phi^{(n)}(0) = i^n \mathbb{E}[X^n]$
- Vice versa: If ϕ has 2p derivates then $E|X|^{2p}$ exists

 $\mathcal{R}e \ \phi(u) - 1 \stackrel{u \to 0}{=} O(|u|^r)$

• Moments 102: (Tauberian Thm) For $0 < \lambda < 2$

$$\mathbb{E}[|X|^r] < \infty \quad \text{for all } r < \lambda \qquad \Longleftrightarrow$$

Rudolf Riedi Rice University

stat.rice.edu/ riedi

for all $r < \lambda$

Extension to orders > 2

Kawata ('72) / Lukacs ('83) / Ramachandran ('69):
 Let 2p<λ≤2p+2 with integer p.

- If
$$\mathbb{E}|X|^{\lambda} < \infty$$
 then $\mathcal{R}e \ \phi(u) - \sum_{k=1}^{p} \frac{(-1)^{k}}{(2k)!} \mathbb{E}[X^{2k}]u^{2k} = O(|u|^{\lambda})$
- Vice versa:

If
$$\mathcal{R}e \ \phi(u) - \sum_{k=1}^{p} a_{2k}u^{2k} = O(|u|^{\lambda})$$

then $\mathbb{E}|X|^r < \infty$ for all $r < \lambda...$

- (upon inspection of proof): provided the $a_{2k} = \frac{(-1)^k}{(2k)!} \mathbb{E}[X^{2k}]$ exist.

$$\mathbb{E}[|X|^r] < \infty \quad \text{for all } r < \lambda \qquad \Longleftrightarrow$$

$$\mathcal{R}_{k=1}^{p} \frac{(-1)^{k}}{(2k)!} \mathbb{E}[X^{2k}] u^{2k} \stackrel{u \to 0}{=} O(|u|^{r}) \quad \text{for all } r < \lambda$$

Estimating the Regularity of ϕ

- Motivation:
 - exact regularity of ϕ at zero provides the cutoff value for finite moments
- Microscope for regularity: Wavelet transform T

$$T(a,t) = \langle \mathcal{R}e \ \phi, \psi_{a,b} \rangle = \int \mathcal{R}e \ \phi(t) \cdot \frac{1}{a} \psi\left(\frac{t-b}{a}\right) dt$$

- Simplified regularity theorem: Assume
 - Wavelet regularity N> λ : $\int t^k \psi(t) dt = 0$ for $0 \le k < N$

 - Transform T(a,t) is maximal at 0
 - Then $\begin{array}{c} \text{Then} \\ \mathcal{R}e \ \phi(u) - P_{\phi}(u) \stackrel{u \to 0}{=} O(|u|^{r}) \quad \text{for all } r < \lambda \\ \Leftrightarrow \qquad T(a, 0) \stackrel{a \to 0}{=} O(|a|^{r}) \quad \text{for all } r < \lambda \\ \text{stat rice} \end{array}$

Rudolf Riedi Rice University

stat.rice.edu/~riedi

Proof of simplified regularity theorem:

• If
$$Y(u) - P_Y(u) \stackrel{u \to 0}{=} O(|u|^r)$$

- and if ψ is supported on [0,1]
- then $T(a,0) \stackrel{a \to 0}{=} O(|a|^r)$

$$|T(a,0)| = |\langle Y, \psi_{a,0} \rangle| = \left|\frac{1}{a}\int_{0}^{a}Y(s)\psi(s/a) ds\right|$$

$$= \left|\frac{1}{a}\int_{0}^{a}(Y(s) - P_{Y}(s))\psi(s/a) ds\right|$$

$$\leq C \cdot \frac{1}{a}\int_{0}^{a}|s|^{r}|\psi(s/a)| ds$$

$$\leq C \cdot a^{r}\frac{1}{a}\int_{0}^{a}|\psi(s/a)| ds$$

$$\leq C \cdot a^{r} \cdot \int_{\mathbb{R}}|\psi(s)| ds$$

Rudolf Riedi Rice University

stat.rice.edu/~riedi

Numerical demonstration

Wavelet Transform

Estimate of scaling exponent

Wavelet Transform of ϕ

RICE

Fourier transform:

$$\Psi_{a,t}(x) = \frac{1}{a} \int \psi(\frac{s-t}{a}) e^{isx} ds = \int \psi(u) e^{i(au+t)x} du = e^{ixt} \Psi(ax)$$

Parseval:

$$T(a,t) = \langle \mathcal{R}e \ \phi, \psi_{a,t} \rangle = \mathcal{R}e \langle F, \Psi_{a,t} \rangle = \mathcal{R}e \mathbb{E}[\Psi_{a,t}(X)]$$

Assume: Fourier Transform Ψ of ψ is real positive.

$$|T(a,t)| \leq \mathbb{E}[|\Psi_{a,t}(X)|] = \mathbb{E}[|\Psi(aX)|] \stackrel{!}{=} |T(a,0)|$$

– in other words: T(a,0) maximal

• Ex:
$$\Psi(u) = u^{2n} \exp(-u^2) \ge 0$$

 $\psi(x) = (-1)^n (\frac{d}{dx})^{2n} \exp(-x^2)$

Rudolf Riedi Rice University

stat.rice.edu/~riedi

Wavelet Transform of ϕ

• Parseval:

$$T(a,t) = \mathbb{E}[\Psi_{a,t}(X)] = \mathbb{E}[e^{ixt}\Psi(ax)]$$

- Assume: Ψ is real positive then T(a,0) maximal
- Recall equivalent conditions for $0 < \lambda < 2$:

(1)
$$\mathcal{R}e \ \phi(u) - 1 \stackrel{u \to 0}{=} O(|u|^r)$$
 for all $r < \lambda$
(2) $T(a, 0) \stackrel{a \to 0}{=} O(|a|^r)$ for all $r < \lambda$

• \rightarrow estimate regularity of Re(ϕ) by the powerlaw

$$|T(a,0)| = \mathbb{E}[|\Psi(aX)|] \sim a^{\lambda}$$

Rudolf Riedi Rice University

- Kawata'72 / Lukacs'83 / Ramachandran'69:
 - Let $2p < \lambda \le 2p + 2$ with integer p.
 - If $\mathbb{E}|X|^{\lambda} < \infty$ then $\operatorname{\mathcal{R}e} \phi(u) \sum_{k=1}^{p} \frac{(-1)^{k}}{(2k)!} \mathbb{E}[X^{2k}] u^{2k} = O(|u|^{\lambda})$
 - and vice versa: If moments up to $\mathbb{E}[X^{2p}]$ exist and $\mathcal{R}e \ \phi(u) - \sum_{k=1}^{p} \frac{(-1)^{k}}{(2k)!} \mathbb{E}[X^{2k}] u^{2k} = O(|u|^{\lambda})$ then $\mathbb{E}|X|^{r} < \infty$ for all $r < \lambda$.
- Wavelets are blind to any polynomials, provide no estimate of differentiability: Ex a function Y(t) with
 - $-Y(t) = 1 + t + t^2 + t^{3.5} \sin(1/t)$
 - Taylor polynomial 1+t: once differentiable at t=0
 - Hoelder polynomial 1+t+t²:best polynomial approximation
 - Regularity 3.5

Rudolf Riedi Rice University

$$Y'(t) = 1 + 2t + 3.5t^{2.5}\sin(1/t) - t^{1.5}\cos(1/t)$$

$$Y''(t) = 2 + 3.5 \cdot 2.5t^{1.5}\sin(1/t) + \dots + t^{-.5}\sin(1/t)$$

Direct link via fractional wavelets

• Consider fractional Wavelets defined in frequency:

$$\Psi_{\nu}(u) = c|u|^{\nu} \exp(-u^2) \ge 0$$

 Lemma: If either side of the following exists then Sup_a T_v(a,0) a^{-v} = c E[|X|^v]

Proof:
$$\underline{T_{\nu}(a,0)a^{-\nu}} = a^{-\nu} \frac{1}{a} \int \phi_X(u)\psi_\nu(u/a)du$$

$$= a^{-\nu} \int \Psi_\nu(ax)dF_X(x)$$
Parseval $= c \int |x|^{\nu} \exp(-(ax)^2)dF_X(x) \xrightarrow{a \to 0} c \int |x|^{\nu}dF_X(x)$

Monotone convergence

• Fill `gap' of Lukacs/Ramachandran

$$\mathcal{R}e \ \phi(u) - \sum_{k=1}^{p} a_{2k} u^{2k} = O(|u|^{\lambda}) \Rightarrow \mathbb{E}|X|^{2p} < \infty$$

Rudolf Riedi Rice University

stat.rice.edu/~riedi

- Kawata'73 / Lukacs'82 / Ramachandran'69:
 - Easy direct fix via monotone convergence
 - Let $2p < \lambda \le 2p + 2$ with integer p.

$$\mathbb{E}[|X|^{r}] < \infty \quad \text{for all } r < \lambda$$

$$\iff \mathbb{R}e \ \phi(u) - \sum_{k=1}^{p} a_{2k} u^{2k} \stackrel{u \to 0}{=} O(|u|^{r}) \quad \text{for all } r < \lambda$$

$$\iff T(a, 0) \stackrel{a \to 0}{=} O(|a|^{r}) \quad \text{for all } r < \lambda$$

Numerical Implementation

$$|T(a,0)| = \mathbb{E}[|\Psi(aX)|] \sim a^{2}$$

ΛT

k=1

The estimator of T(a,0) of ϕ is

• ...simple:

$$\widehat{T}(a,0) = \widehat{\mathbb{E}}[\Psi(aX)] = 1/N \sum_{k=1}^{N} \Psi(aX_k)$$

- ...unbiased
- ...non-parametric!
- Estimation of critical order $\lambda = \sup\{q: E[|X|^q] < \infty\}$

$$1/N\sum_{k=1}^N \Psi(aX_k) \simeq a^\lambda$$
 as $a o 0$

Rudolf Riedi Rice University

stat.rice.edu/~riedi

RICE

Practical Considerations

- $1/N\sum_{k=1}^N \Psi(aX_k) \simeq a^\lambda$ as a o 0
- With high enough regularity
 - With high enough regularity (N>λ)
 With real positive Fourier transform
 - (ex: even derivatives of Gaussian kernel)
- Cutoff scales J0 < j < J1
 - Shannon argument on max $\{x_i\}$: lower bound J0
 - Body / Tail frontier : upper bound J1
- Interpretation of estimator:
 - Weight-average of samples with weight $\Psi(aX)$
 - Shift weights out to large samples by scaling $a \rightarrow 0$

Rudolf Riedi Rice University

Cutoff scales

Ex: Hybrid distribution (Gamma body and stable tails)

(for x >= δ)
 • x ~ α-stable (β=1),
 • E |x|^r = ∞, r >= α

• (for x < δ) • x ~ Γ(γ)

• $E |\mathbf{x}|^r = \infty, r <= -\gamma$

Rudolf Riedi Rice University

stat.rice.edu/~riedi

Competing for stable parameter

Alpha-stable Laws:

 compare with Koutrouvelis'80 and McCullogh'86 are parametric (stable distribution)

- non-parametric wavelet based estimator is
 - competitive
 - · especially for intermediate to small a

α	0.2	0.6	1	1.4	1.8	
Wavelet based	0.196 ± 0.007	0.58 ± 0.018	1.0 ± 0.035	1.46 ± 0.066	1.74 ± 0.02	
$\widehat{\alpha} \left(\mathrm{Koutrouvelis} \right)$	ND	0.60 ± 0.007	1.0 ± 0.009	1.403 ± 0.013	1.80 ± 0.012	
$\widehat{\alpha}$ (McCullogh)	0.59 ± 0.0018	0.605 ± 0.009	1.0 ± 0.009	1.40 ± 0.016	1.80 ± 0.022	

Competing for Pareto parameter

1/Gamma Laws:

- Pareto
- Koutrouvelis'80 and McCullogh'86 are parametric (stable distribution)
- non-parametric wavelet based estimator is
 - superior

γ	0.2	0.4	0.6	0.8			
Wavelet based	0.204 ± 0.007	0.395 ± 0.008	0.589 ± 0.015	0.793 ± 0.03			
$\widehat{\alpha}$ (Koutrouvelis)	ND	0.433 ± 0.006	0.56 ± 0.007	0.67 ± 0.009			
$\widehat{lpha} \ ({ m McCullogh})$	0.513 ± 0.000	0.514 ± 0.000	0.583 ± 0.009	0.72 ± 0.013			

Interlude

Statistical scaling

Statistical Self-similarity

• H-self-similar:

B(at) =^{fdd} a^H B(t) stationary increments

- H-ss examples
 - Gaussian: unique, fractional Brownian motion
 - Stable: not unique, Levy motion

How do self-similar processes occur?

• X_k: stationary time series

- \rightarrow ADDITIVE SCHEME
- X_k iid, finite variance: H=1/2, Z is Brownian motion
- X_k LRD: H>1/2, Z is fractional Brownian motion

Rudolf Riedi Rice University

Scaling of moments

Self-similarity: $\mathbb{E}[|B(t+\delta) - B(t)|^q] \simeq \delta^{qH}$ Multifractal scaling: $\mathbb{E}[|X(t+\delta) - X(t)|^q] \simeq \delta^{\tau(q)}$

- Multifractal:
 - In distribution, log $|X(t)-X(t+\delta)|$ looks like a convolution,
 - Thus, $|X(t)-X(t+\delta)|$ looks in distribution like a product

 $\mathbb{E}[e^{q \log |X(\delta)|}] \simeq \exp(\tau(q) \log(\delta)) = (\exp(\tau(q))^{\log(\delta)})$

log δ -fold convolution

- τ(q)=Hq:
 - Multifractal regresses to self-similarity (mono-fractal).
 - X looks statistically like a constant
- Model identification:
 - Additive versus multiplicative
 - Linear versus strictly convex tau(q)

Monofractal versus Multifractal

Fractional Brownian motion Levy modulus of continuity: $|B_{H}(t+d)-B_{H}(t)| \sim |d|^{H}$ for all t

RICE

Rudolf Riedi Rice University

Model identification

...through scaling of moments

Why Moments and Scaling

Turbulence: models wanted

Velocity field v(x)

- Kolmogorov 1941:
 - $-\mathbb{E}|v(t+\delta)-v(t)|^q\simeq \delta^{q/3}$
 - Linear model, fBm
- Kolmogorov 1962:

$$- \mathbf{\mathbb{E}} |v(t+\delta) - v(t)|^q \simeq \delta^{\tau(q)}$$

- Multiplicative model, Cascade
- More recent:
 - non-powerlaw scaling
- Infinitely divisible cascades Rudolf Riedi Rice University

Courtesy P. Chainais

Scaling and statistical aspects

- Networks
 - Non-Gaussianity / Long-memory
 - Model identification (cascade?)
- WWW
 - File size distribution
- Stock Markets
 - Long-memory

Log-normal?

Praxis of estimating $\tau(q)$

- Data: Y_k = A(k+1)-A(k) traffic load per time unit
- $S(j,q) = \Sigma_k |Y_k|^q$
- $\tau(q) = \text{slope of } j \rightarrow \log S(j,q)$

j→log S(j,q) for several q

Slope = $\tau(q)$

Data = Bellcore 1993 traffic arrival per time bin

Rudolf Riedi Rice University

stat.rice.edu/~riedi

Praxis of model matching

Rudolf Riedi Rice University

Equal variance on all scales

stat.rice.edu/~riedi

Model identification

RICE

Identify the Multifractal

- One of these signals is a stable Levy flight,
- ...the other is a multiplicative cascade.
- Which is which?

Rudolf Riedi Rice University

Wavelet transform: $a^{-\frac{1}{2}} \int x(t) \psi((t-b)/a) dt$

Rudolf Riedi Rice Universit Challenge: which wavelet to use. stat.r

stat.rice.edu/~riedi

Estimating $\tau(q)$ from $\mathbb{E}|T(a,b)|^q \simeq a^{\tau(q)}$

Challenge: which orders to use.stat.rice.edu/~riedi

Rudolf Riedi Rice University

Estimate of τ

Challenge: Interpretation.

Rudolf Riedi Rice University

stat.rice.edu/~riedi

RICE

Supervised multifractal estimation

The moments exist only for a few q. The spectrum hints to a monofractal, i.e., Levy flight Rudolf Riedi Rice University The moments exist in a wide range. The spectrum hints to a multifractal, i.e., a cascade. stat.rice.edu/~riedi

Summary

- Wavelets useful for non-parametric estimation
- Holder regularity of characteristic function tied to existence of moments beyond order 2
- Estimating critical order of finite moments useful for
 - Tail estimation
 - Model identification

References: Scaling processes

- Beran, J. (1994). *Statistics for Long-Memory Processes*, Chapman & Hall.
- Samorodnitsky, G. and Taqqu, M.S. (1994). *Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance*, Chapman and Hall.
- Doukhan, Oppenheim and Taqqu (eds) (2002): *Long range dependence : theory and applications*, Birkhaeuser
- Software:
 - Goncalves: http://www.inrialpes.fr/is2/people/pgoncalv
 - Veitch: http://www.emulab.ee.mu.oz.au/~darryl
 - Riedi: http://www.stat.rice.edu/~riedi

Rudolf Riedi Rice University

The end

Papers (JASA, TechRep)

stat.rice.edu/~riedi

Direct link via fractional wavelets

Consider fractional Wavelets defined in frequency:

$$\Psi_{\nu}(u) = c|u|^{\nu} \exp(-u^2) \ge 0$$

 Lemma: If either side of the following exists then Sup_a T_v(a,0) a^{-v} = c E[|X|^v]

Proof:
$$\underline{T_{\nu}(a,0)a^{-\nu}} = a^{-\nu} \frac{1}{a} \int \phi_X(u)\psi_\nu(u/a)du$$

$$= a^{-\nu} \int \Psi_\nu(ax)dF_X(x)$$
Parseval $= c \int |x|^{\nu} \exp(-(ax)^2)dF_X(x) \xrightarrow{a \to 0} c \int |x|^{\nu}dF_X(x)$

Monotone convergence

• Fill `gap' of Lukacs/Ramachandran

J

$$\mathcal{R}e \ \phi(u) - \sum_{k=1}^{p} a_{2k}u^{2k} = O(|u|^{\lambda}) \Rightarrow \mathbb{E}|X|^{2p} < \infty$$

Rudolf Biodildide weed for numerical estimation; not very robust

- Kawata / Lukacs / Ramachandran (1969):
 - Easy direct fix via monotone convergence
 - Let $2p < \lambda \le 2p + 2$ with integer p.

$$\mathbb{E}[|X|^{r}] < \infty \quad \text{for all } r < \lambda$$

$$\iff \mathcal{R}e \ \phi(u) - \sum_{k=1}^{p} a_{2k} u^{2k} \stackrel{u \to 0}{=} O(|u|^{r}) \quad \text{for all } r < \lambda$$

Proof If $\mathbb{E}|X|^r < \infty$ then $\mathcal{R}e\phi(u) - \sum_{k=1}^p \mathbb{E}[X^{2k}]u^{2k} = O(|u|^r)$ If $\mathcal{R}e\phi(u) - \sum_{k=1}^p a^k u^{2k} = O(|u|^{\lambda})$ then $\mathbb{E}|X|^r < \infty$ for all $r < \lambda$ and $a_k = \mathbb{E}[X^{2k}]$.

Legendre transform: inf_q (qa- τ (q))

Rudolf Riedi Rice University

stat.rice.edu/~riedi

Supervised multifractal estimation

