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Abstract

In this paper� we develop a simple and powerful multiscale model
for the synthesis of nonGaussian� long�range dependent �LRD�
network tra�c� Although wavelets e�ectively decorrelate LRD
data� wavelet�based models have generally been restricted by a
Gaussianity assumption that can be unrealistic for tra�c� Us�
ing a multiplicative superstructure on top of the Haar wavelet
transform� we exploit the decorrelating properties of wavelets
while simultaneously capturing the positivity and 	spikiness
 of
nonGaussian tra�c� This leads to a swift O�N� algorithm for
�tting and synthesizing N �point data sets� The resulting model
belongs to the class of multifractal cascades� a set of processes
with rich statistical properties� We elucidate our model�s ability
to capture the covariance structure of real data and then �t it
to real tra�c traces� Queueing experiments demonstrate the ac�
curacy of the model for matching real data� Our results indicate
that the nonGaussian nature of tra�c has a signi�cant e�ect on
queuing�

� Introduction

Tra�c models play a signi�cant r
ole in the analysis and charac�
terization of network tra�c and network performance� Accurate
models enhance our understanding of these complex signals and
systems by allowing us to study the e�ect of various model pa�
rameters on network performance through simulation�
The presence of long�range dependence �LRD� in modern net�

work tra�c was demonstrated convincingly in the landmark
paper by Leland et� al� ���� There� measurements of tra�c
load on an Ethernet were attributed to fractal behavior or self�
similarity� i�e�� to the fact that the data 	looked statistically
similar
 �	bursty
� on all time�scales� These features are inade�
quately described by classical tra�c models� such as Markov or
Poisson models� In particular� the LRD of data tra�c can lead
to higher packet losses than that predicted by classical queuing
analysis ��� ���
These �ndings were immediately followed by the development

of new fractal tra�c models ������ The fractional Brownian mo�
tion �fBm�� the most broadly applied fractal model� is the unique
Gaussian process with stationary increments and the following

�This work was supported by the National Science Foundation� grant
no� MIP������	
� by DARPA�AFOSR� grant no� F���
����������	� and
by Texas Instruments� Email� fmcrouse� riedi� vinay� richbg�rice�edu�
URL� www�dsp�rice�edu�

scaling property for all a � �

B�at�
fd
� aHB�t�� ���

with equality in ��nite�dimensional� distribution� The increment
process G�k� � B�k����B�k�� called fractional Gaussian noise
�fGn�� has an autocorrelation of the form

rG�k� �
��

�
�jk � �j�H � �jkj�H � jk � �j�H�� ���

The parameter H � � � H � �� is known as the Hurst parameter�
It simultaneously rules the large�scale behavior and the degree
of local 	spikiness�
 In particular� for all t

B�t� s��B�t� � sH ���

�more precisely� B�t� s��B�t� is a zero�mean Gaussian process
of variance s�H�� meaning that fBm has 	in�nite slope
 every�
where� Processes approximating fBm�fGn can be synthesized
almost e�ortlessly in the wavelet domain due to the amazing
decorrelating e�ect of the wavelet transform ����
A strong argument for the fBm�fGn models in networks is

that in many cases tra�c can be viewed as the superposition
of a large number of independent individual ON�OFF sources�
with the ON durations heavy�tailed ��� ��� In this case� sub�
tracting the mean arrival rate and normalizing properly� the
aggregated ON�OFF sources �cumulative arrivals� converge to
Gaussian fBm by the central limit theorem �CLT� ������ A 	self�
similar
 tra�c arrival model �of the increments process� is� thus�
simply an 	fGn�mean
 model with given variance and H � The
fBm�fGn models have found wide use in networking� since their
Gaussianity and strong scaling ��� allows analysts to perform
analytical studies of queueing behavior �������
Unfortunately� the fBm�fGn models have severe limitations

for network tra�c applications� First� real�world tra�c traces
do not exhibit the strict self�similarity of ��� or ��� and are at
best merely asymptotically self�similar� In other words� the sin�
gle parameter H is not su�cient to capture the complicated cor�
relation structure of real network processes� Indeed� convincing
evidence has been produced establishing the importance of short�
term correlations for bu�ering ������� and so�called relevant time
scales have been discovered ����� The wavelet�domain indepen�
dent Gaussian �WIG� model generalizes fBm�fGn by allowing a
more �exible scaling relation than ���� By matching both long
and short�term correlations� the WIG model more completely
matches the correlation structure of a target data set �����



� Proceedings SigMetrics ���� Atlanta� GA

LBL�TCP�� data WIG synthesis MWM synthesis

0 1000 2000 3000 4000
−2000

0

2000

4000

6000

8000

time (1 unit = 6 ms) →

nu
m

be
r 

of
 b

yt
es

 →

0 1000 2000 3000 4000
−2000

0

2000

4000

6000

8000

time (1 unit = 6 ms) →

nu
m

be
r 

of
 b

yt
es

 →

0 1000 2000 3000 4000
−2000

0

2000

4000

6000

8000

time (1 unit = 6 ms) →

nu
m

be
r 

of
 b

yt
es

 →

0 2000 4000 6000 8000
−2000

0

2000

4000

6000

8000

10000

12000

14000

time (1 unit = 6 ms) →

nu
m

be
r 

of
 b

yt
es

 →

0 2000 4000 6000 8000
−2000

0

2000

4000

6000

8000

10000

12000

14000

time (1 unit = 6 ms) →

nu
m

be
r 

of
 b

yt
es

 →

0 2000 4000 6000 8000
−2000

0

2000

4000

6000

8000

10000

12000

14000

time (1 unit = 6 ms) →

nu
m

be
r 

of
 b

yt
es

 →

0 5000 10000 15000
−5000

0

5000

10000

15000

20000

time (1 unit = 6 ms) →

nu
m

be
r 

of
 b

yt
es

 →

0 5000 10000 15000
−5000

0

5000

10000

15000

20000

time (1 unit = 6 ms) →

nu
m

be
r 

of
 b

yt
es

 →

0 5000 10000 15000
−5000

0

5000

10000

15000

20000

time (1 unit = 6 ms) →

nu
m

be
r 

of
 b

yt
es

 →

�a� �b� �c�

Figure �� Bytes�per�time arrival process at di�erent aggregation levels for �a� wide�area TCP tra�c at the Lawrence Berkeley Laboratory
�trace LBL�TCP��� �	
�� �b� one realization of the state�of�the�art wavelet�domain independent Gaussian �WIG� model �	
�� and �c� one
realization of the multifractal wavelet model �MWM� synthesis� The top� middle and bottom plots correspond to bytes arriving in intervals of
� ms� �� ms and �	 ms respectively� The top and middle plots correspond to the second half of the middle and bottom plots� respectively� as
indicated by the vertical dotted lines� The MWM traces closely resemble the real data closely� while the WIG traces �with their large number
of negative values� do not�

Second� the Gaussianity of fBm�fGn�WIG models can be un�
realistic for certain types of tra�c� for instance when the stan�
dard deviation of the data exceeds the mean� In this case� the
fBm�fGn�WIG output signals take on a considerable number of
negative values �see Figure ���

Third� in many networking applications� we are nowhere near
the Gaussian limit� in particular on small time scales� Indeed�
various authors have observed marginals that di�er substantially
from Gaussian� Usually these distributions have been observed to
be heavy tailed ���� p� ����� ����� Consequently� methods aimed
at �tting marginals have been developed �������� Also� more ver�
satile models such as fractional ARIMA ���� have been applied
towards better matching the short�range and long�range correla�
tion structure present in real traces�

In this paper� we propose a new non�linear model for network
tra�c data� The multifractal wavelet model �MWM� is based on
a multiplicative cascade in the wavelet domain that by design
guarantees a positive output� Since each sample of the MWM
process is obtained as a product of several positive independent
random variables� the MWM�s marginal density is approximately
lognormal� a heavier�tailed distribution than the Gaussian� The
MWM is thus a more natural �t for positive arrival processes�
especially those with a standard deviation much larger than the
mean �as observed in the traces we have studied��

In its simplest form� the MWM is closely related to the wavelet�
based construction of fBm�fGn� having as few parameters �mean�
variance� H�� However� the MWM framework boasts the �exi�
bility to additionally match the short�term correlations like the
WIG model�

The MWM has a bursty demeanor that matches that of real
tra�c much more closely than fBm�fGn� The TCP tra�c we
have studied here exhibits local scaling similar to ���� but with
an exponent Ht that depends on t� This has been termed mul�
tifractal behavior and was reported for the �rst time in ���� and
subsequently in �������� Amazingly� the statistical properties of
Ht as a random variable in t can be described compactly through
a function T �q� that controls the scaling behavior of the sample
moments of order q� This powerful relation� called the multifrac�
tal formalism� ties burstiness� higher�order dependence structure�
and moments of marginals together in one uni�ed theory�

Fitting the MWM to real tra�c traces results in an excellent
match� far better than the WIG model� visually �see Figure ��
and� as we will see� in the multifractal partition function T �q� �
the burstiness as measured by the multifractal spectrum� the
marginals� and the queueing behavior� Since these properties all
depend on the small time�scale behavior� it appears that the mul�
tiplicative MWM approach is more appropriate than an additive
Gaussian one�
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In this paper� we summarize the impact of LRD on network�
ing in Section �� After introducing the wavelet transform and
describing the WIG model in Section �� we derive the MWM in
Section �� Section � reports on the results of simulation exper�
iments with real data traces� We give an intuitive introduction
to multifractal cascades in Section � and close with conclusions
in Section ��

� Long�range Dependence in Network

Tra�c

The discovery of LRD in data tra�c ��� ��� has incited a revo�
lution in network design� control and modeling� Intuitively� the
strong correlations present in a LRD process are responsible for
its 	bursty
 nature� Thus� LRD tra�c arrives in bursts that�
upon entering a queue� cause excessive bu�er over�ows that are
not predicted by traditional non�LRD tra�c models such as Pois�
son and Markov models ����

��� Long�range dependence �LRD�

Consider a discrete�time� wide�sense stationary random pro�
cess fXt� t � ZZg with auto�covariance function rX �k� �
cov�Xt� Xt�k�� A change in time scale can be represented by

forming the aggregate process X
�m�
t � which is obtained by aver�

aging Xt over non�overlapping blocks of length m replacing each
block by its mean

X
�m�
t �

Xtm�m�� � � � ��Xtm

m
� ���

Denote the auto�covariance of X
�m�
t by r

�m�
X �k�� The process X is

said to exhibit LRD if its auto�covariance decays slowly enough
to render

P
�

k��� rX �k� in�nite ����� Equivalently� the power

spectrum SX�f� is singular near f � � and m r
�m�
X ��� � �

as m � ��
An important class of LRD processes are the asymptotically

second�order self�similar processes� which may be de�ned by the
property rX �k� � k�H�� for some H � ����� ��� or equivalently
by ����

var�X�m�� � r
�m�
X ���� m�H�� ���

asm��� In words� these processes 	look similar
 on all scales�
at least from point of view of second�order statistics� The fGn�
is such a process where the Hurst parameter H is the same as in
����
To estimate H by the variance�time plot method� we �t a

straight line through the plot of an estimate of log var�X�m��
against log�m�� More reliable estimators have also been de�
vised ����� in particular an unbiased one based on wavelets �����

��� Impact of LRD on networking

The pre�eminent LRD model at present is the fGn� Its popularity
stems from the fact that it is a second�order self�similar Gaussian
process ���� and thus is analytically tractable� In addition� it is
completely described by just two parameters � variance and
H � When fGn is input to an in�nite�length queue with constant
service rate� the tail queue distributions decay asymptotically
with a Weibullian law

P �Q � x� 	 exp���x���H�� ���

with � a positive constant that depends on the service rate at
the queue ���� ���� The decay of the tail queue distribution for
fGn with H � ��� is much slower than the exponential decay
predicted by short�range dependent �SRD� classical models ����
This corresponds to the case H � ����
Even though ��� shows that LRD processes have higher tail

queue probabilities than SRD processes� there is still an ongoing
discussion on the e�ect of LRD on queuing� with researchers
arguing both for and against its importance ��������������

� Wavelets and LRD Processes

��� Wavelet transform

The discrete wavelet transform provides a multiscale signal repre�
sentation of a one�dimensional signal c�t� in terms of shifted and
dilated versions of a prototype bandpass wavelet function 	�t�
and shifted versions of a lowpass scaling function 
�t� ����� For
special choices of the wavelet and scaling functions� the atoms

	j�k�t� � �j�� 	
�
�jt� k

�
�


j�k�t� � �j�� 

�
�jt� k

�
� j� k � ZZ ���

form an orthonormal basis� and we have the signal representation
����

c�t� �
X
k

uJ��k 
J��k�t� �
�X

j�J�

X
k

wj�k 	j�k�t�� ���

with wj�k �
R
c�t�	�j�k�t� dt� and uJ��k �

R
c�t�
�J��k�t� dt�

Without loss of generality� we will assume J� � ��
In this representation� k indexes the spatial location of anal�

ysis and j indexes the scale or resolution of analysis � larger
j corresponds to higher resolution with j � � indicating the
coarsest scale or lowest resolution of analysis� In practice� we
work with a sampled or �nite�resolution representation of c�t��
replacing the semi�in�nite sum in ��� with a sum over a �nite
number of scales � 
 j 
 n� �� n � ZZ� Using �lter bank tech�
niques� the wavelet transform and inverse wavelet transform can
be computed in O�N� operations for a length�N signal� For more
information on wavelet systems and their construction� see �����
In the Haar wavelet transform �see Figure ��� the prototype

scaling and wavelet functions are given by


�t� �

�
�� � 
 t � �
�� else

and 	�t� �

��
�

�� � 
 t � ���
��� ��� 
 t � �
�� else�

The Haar scaling and wavelet coe�cients can be recursively com�
puted via ����

uj���k � ������uj��k � uj��k����

wj���k � ������uj��k � uj��k����
���

��� Modeling LRD data

Wavelets serve as an approximate Karhunen�Lo eve or decorre�
lating transform for fBm ���� fGn� and more general LRD sig�
nals ����� Hence� modeling and processing of these signals in the
wavelet domain is often more e�cient and powerful than in the
time domain�
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Figure �� �a� The Haar scaling and wavelet functions �j�k
t� and �j�k
t�� �b� Binary tree of scaling coe�cients from coarse to �ne scales� �c�
Recursive scheme for calculating the Haar scaling coe�cients Uj����k and Uj����k�� at scale j � � as sums and di�erences of the scaling and
wavelet coe�cients Uj�k and Wj�k at scale j �normalized by ��

p
��� For the WIG model� the Wj�k�s are mutually independent and identically

distributed within scale according to Wj�k � N
�� ��j ��

The variance of the wavelet coe�cients of continuous�time fBm
decays with scale according to a power law in H ���� For fGn� an
exact power�law in H also holds for decay of the Haar wavelet
coe�cient variances ����� This power�law decay� along with the
decorrelation property of wavelets� has led to fast� robust algo�
rithms for estimation ���� ����
Gaussian LRD processes can be approximately synthesized by

generating wavelet coe�cients as independent zero�mean Gaus�
sian random variables� identically distributed within scale ac�
cording toWj�k � N��� ��j ��

� with ��j the wavelet�coe�cient vari�
ance at scale j �����
A power�law decay for the ��j �s leads to approximate wavelet

synthesis of fBm or fGn ���� However� while network tra�c may
exhibit LRD consistent with fBm or fGn� it may have short�
term correlations that vary considerably from pure fBm or fGn
scaling� Such LRD processes can be modeled by setting ��j to
match the measured or theoretical variances of the wavelet coef�
�cients of the desired process ����� We call the resulting model
the wavelet�domain independent Gaussian �WIG� model ���� �see
Figure ��c��� For a length�N signal� the WIG is characterized by
approximately log�N parameters�
The WIG model assumes Gaussianity even though network

tra�c signals �such as loads and interarrival times� can be
highly nonGaussian� Not only are these signals strictly non�
negative� but they can exhibit 	spiky
 behavior corresponding
to a marginal distribution whose right�side tail decays much
more slowly than that of a Gaussian� We seek a more accurate
marginal characterization for these spiky� non�negative LRD pro�
cesses� yet wish to retain the decorrelating properties of wavelets
and the simplicity of the WIG model�

��� Modeling non�negative data with the Haar
wavelet

In order to model non�negative signals using the wavelet trans�
form� we must develop conditions on the scaling and wavelet
coe�cient values for c�t� in ��� to be non�negative� While cum�
bersome for a general wavelet system�� these conditions are sim�
ple for the Haar system �see Figure ��� on which we focus for the

�We use capital letters when we consider the underlying variables to be
random�

�The conditions are straightforward also for certain biorthogonal wavelet
systems�

balance of this paper�
Since the scaling coe�cients uj�k represent the local mean of

the signal at di�erent scales and shifts� they are non�negative if
and only if the signal itself is non�negative! that is� c�t� � � �
uj�k � �� 
 j� k� This condition leads us directly to constraints on
the Haar wavelet coe�cients� Solving ��� for uj��k and uj��k���
we �nd

uj��k � ������uj���k � wj���k��
uj��k�� � ������uj���k � wj���k��

����

which corresponds to moving down the tree in Figure ��b� one
scale level at a time�
Now� combining ���� with the constraint uj�k � �� we obtain

the condition

c�t� � �� jwj�k j 
 uj�k� 
 j� k� ����

� Multifractal Wavelet Model

Let us summarize our basic wavelet�based approach for modeling
nonGaussian LRD network tra�c� As with the WIG we will
characterize the Haar wavelet variance decay as a function of
scale to capture the short�range and long�range correlations� In
contrast to the WIG� we will enforce the constraint ���� to ensure
the non�negativity of the model output�
To keep things clear� we will introduce three di�erent pro�

cesses� the continuous�time model output c�t�� its integral D�t��
and a discrete�time approximation C�k� to c�t�� These three sig�
nals are related by

C�k� �

Z �k�����n

k��n
c�t� dt � D ��k � ���n��D �k�n� � ����

Here� c�t� and D�t� play r
oles analogous to fGn and fBm� respec�
tively�
For notational simplicity� we will assume that both c�t� and

D�t� live on ��� �� and that C�k� is a length��n discrete�time sig�
nal� Thus� there is only one scaling coe�cient U��� in ���� �A
more general case is treated in ������ We will primarily focus on
C�k��
For the Haar wavelet transform� C�k� relates directly to the

�nest�scale scaling coe�cients�

C�k� � �n��Un�k� k � �� �� � � ��n � �� ����
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Figure �� MWM construction� At scale j� generate the multiplier
Aj�k � �
pj � pj�� and then form the wavelet coe�cient as the product
Wj�k 
 Aj�kUj�k� At scale j�� of this tree� form the scaling coe�cients
in the same manner as the WIG model in Figure ��

��� The model

The positivity constraints ���� on the Haar wavelet coe�cients
suggest a very simple multiscale� multiplicative signal model for
positive processes� In the multifractal wavelet model �MWM� we
compute the wavelet coe�cients recursively by

Wj�k � Aj�k Uj�k� ����

with Aj�k a random variable supported on the interval ���� ���
Together with ����� we obtain �see Figure ��

Uj��k � ������� �Aj���k�Uj���k�
Uj��k�� � ��������Aj���k�Uj���k�

����

See ���� for a similar model used as an intensity prior for wavelet�
based image estimation�
To generate a realization of an MWM process� we perform the

following coarse�to��ne synthesis�

�� Set j � �� Fix or compute the coarsest �root� scaling coef�
�cient U���� establishing the global mean of the signal�

�� At scale j� generate the random multipliers Aj�k and calcu�
late each Wj�k via ���� for k � �� � � � � �j � ��

�� At scale j� use Uj�k and Wj�k in ���� to calculate Uj����k
and Uj����k��� the scaling coe�cients at scale j � �� for
k � �� � � � � �j � ��

�� Iterate steps � and �� replacing j by j � � until the �nest
scale j � n is reached�

We can express the signal C�k� directly as a product �or cas�
cade� of the random multipliers ��Aj�k� Decomposing each shift

k into a binary expansion k �
Pn��

i�� k
�

i�
n���i� we can write

C�k� � ��n��Un�k � ��n U���

n��Y
i��

�� � ����k
�

iAi�ki�

�
� ����

with

k� � �� and ki �
i��X
j��

k�i�
i���j � i � �� � � � � n� �� ����

Table �� Comparison of the tree�based WIG and MWM models� For
approximating a signal with a strict fGn covariance structure� both
the WIG and MWM require only three parameters �mean� variance�
and H��

WIG MWM

Additive Multiplicative
Gaussian Asymptotically Lognormal

LRD matched LRD matched
Monofractal Multifractal

log�N � � parameters log�N � � parameters
O�N� synthesis O�N� synthesis

This result can be derived by iteratively applying ���� �����
Since the scaling coe�cients are generated simultaneously with

the wavelet coe�cients� there is no need to invert the wavelet
transform� The �nest�scale scaling coe�cients Un�k are in fact
the MWM output process ����� The total cost for computing N
MWM signal samples is O�N�� In fact� synthesis of a trace of
length ��� data points takes just � seconds of workstation cpu
time�

��� � multipliers

All that remains is to choose an appropriate distribution for the
multipliers Aj�k� For simplicity of development� we will assume
that the Aj�k�s are mutually independent and independent of
Uj�k� We will also assume that the Aj�k�s are symmetric about
� and identically distributed within scale! it is easily shown that
these two conditions are necessary for the resulting process to
be �rst�order stationary ����� This leads us to the choice of the
symmetric beta distribution� ��p� p� �see Figure �� for the Aj�k�s

Aj�k � ��pj � pj�� ����

with pj the beta parameter at scale j� The beta distribution
is compactly supported� easily shaped� and amenable to closed�
form calculations� The variance of a random variable A � ��p� p�
is

var�A� �
�

�p� �
� ����

In the MWM� the pj play a r
ole analogous to the �
�
j of the WIG

model� With one beta parameter per wavelet scale� the MWM
uses approximately log�N parameters for a trace of length N �
Distributions with more parameters �e�g�� discrete distributions
or mixtures of betas� could be used to capture high�order data
moments at a cost of increased model complexity ����� See Table
� for a comparison of the WIG and MWM properties�

��� Covariance matching

The pj �s allow us to control the wavelet energy decay across scale�
since

var�Wj���k�

var�Wj�k�
�

� var �Aj���k �

var �Aj�k� �� � var �Aj���k��
�

�pj � �

pj�� � �
� ����

Thus� to model a given process with the MWM� we can select
the pj �s to match the signal�s theoretical wavelet�domain energy
decay� Or� given training data� we can select the parameters
to match the sample variances of the wavelet coe�cients as a
function of scale�
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p� p� random variable
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 ���� A resembles a binomial random variable� and for
p 
 � it has a uniform density� For p � � the density appears like a
truncated Gaussian density� and as p increases� the density resembles
a Gaussian density more and more closely�

To complete the modeling� we must choose the parameter p�
of the model and characterize the distribution of the coarsest
scaling coe�cient U���� From ���� and ���� we obtain

��p� � ��var�W���� � IE�U�
����� ����

which allows us to obtain p� from estimates of IE�U�
���� and

var�W�����
To precisely model U���� we would have to use a strictly

non�negative probability density function to ensure the non�
negativity of the MWM output� However� in practice a Gaus�
sian model at the coarsest scale �requiring IE�U���� and var�U�����
is usually su�cient if enough scales are employed �so that
IE�U����� standard deviation of U�����

� Experimental Results

In this section� we perform experiments with real data traces to
demonstrate the MWM�s capacity to capture important proper�
ties of real data� As expected� the MWM does an excellent job
in capturing the correlation structure of real data sets� We also
observe that the MWM performs well in matching the marginals
and higher�order moments of real data� Recall that the Gaussian
WIG model is also capable of capturing the correlation structure
of training data� We thus have two models� both of which capture
the correlation structure of real data but with the MWM com�
ing closer to matching the marginals and higher�order moments�
Equipped with these models� we are in an excellent position to
perform queuing experiments to study if the correlation struc�
ture is by itself su�cient to capture the queuing behavior of real
tra�c�

	�� Real data

We use two well�known real data traces in our experiments� The
�rst �LBL�TCP��� contains two hours� worth of wide�area TCP
tra�c between the Lawrence Berkeley Laboratory and the rest
of the world ����� This data contains the following informa�
tion about each packet� the time�stamp� �renumbered� source
host� �renumbered� destination host� source TCP port� destina�
tion TCP port� and number of data bytes� In our experiments we
use only the time�stamp and data bytes information� We form a
data trace by counting the number of bytes of packets that arrive
in consecutive time intervals of � ms and use the �rst ��� data
points in our simulation experiments� This trace has a sample
mean of ����� bytes��unit time� and sample standard deviation
of ����� bytes��unit time��

The second real data set is one of the famous Ethernet data
traces collected at Bellcore Morristown Research and Engineer�
ing facility ���� The trace �BC�pAug��� began at ����� on Au�
gust ��� ����� and ran for about ������� seconds �until ���������
packets had been captured�� As in the case of the LBL�TCP��
data set� we obtain a data trace by summing the bytes of pack�
ets that arrived in consecutive time intervals of ��� ms� We use
the �rst ��� data points of this trace in our experiments� This
trace has mean ����� bytes��unit time� and standard deviation
����� bytes��unit time�� The BC�pAug�� trace is approximately
a second�order self similar process with H � ���� �����

	�� Physical Interpretation

The MWM multipliers have a simple interpretation as recur�
sively partitioning the arriving bytes into smaller and smaller
time intervals� For instance� the value U��� determines the total
number of bytes in the entire trace� The value A��� determines
how many of these packets will be placed in the �rst half of the
trace� The value A��� then determines how many of these bytes
will be placed in the �rst quarter of the trace� and so on�
When trained on real network data� the behavior of the mul�

tipliers Aj�k changes with scale� with extremely low variance at
coarse scales and high variance at �ne scales� Amazingly� this
is consistent with both the small�scale behavior of actual tra�c
and the large�scale properties resulting from the superposition
of a large number of souces ��� ��� At �ne scales multiplicative
schemes with large variances produce bursts like those in real
data �recall Figure ��� At coarse scales� the scaling coe�cients
�which correspond to the arrival of tra�c over large time scales�
involve only a handful of low�variance multipliers Aj�k� From
���� we can write� for example� at the third�coarsest scale�

U���
fd
�

U���

�
�� �A���� �� �A����

fd
	

U���

�
�� �A��� �A���� ����

Thus� for a �xed U��� at the coarsest scale� to a �rst�order ap�
proximation� the MWM is additive at the coarse scales provided
the random variables Aj�k are small in amplitude� Moreover� the
Aj�k are approximately Gaussian for these low�variance �high�
p� symmetric � multipliers ����� Hence� coarse�resolution MWM
outputs will exhibit an additive� Gaussian�like behavior consis�
tent with that of the previously justi�ed ON�OFF models and
notions of client behavior as a superposition of sources ��� ���

	�� Matching of Real Data

In order to study how well the MWM and WIG models can
match real data� we train them on the the real data traces� To
�t the WIG and MWM models to the data� we use the procedure
outlined in Sections ��� and ���� which involves taking a Haar
wavelet transform of the real data and estimating the variances
��j of the wavelet coe�cients at each scale� We estimate these
variances only at the �� �nest scales� because at coarser scales
there are not a su�cient number of coe�cients to obtain good
variance estimates� As a result� we synthesize data traces of
maximum length ��	 data points� For both the MWM and WIG�
we model the coarsest�scale scaling coe�cient U��� as a Gaussian
random variable with mean and variance equal to the sample
mean and variance of the scaling coe�cients of the real data
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Figure �� Histograms of the bytes�per�times process at di�erent aggregation levels for �a� wide�area TCP tra�c at the Lawrence Berkeley
Laboratory �trace LBL�TCP��� �	
�� �b� one realization of the WIG model� and �c� one realization of the MWM synthesis� The top� middle
and bottom plots correspond to bytes arriving in intervals of � ms� �� ms and �	 ms respectively� Note the large probability mass over negative
values for the WIG model�

at this scale� With trained models in hand� we now generate
synthetic data traces�

Due to space constraints� we present �tting results only for
the LBL�TCP�� trace� Recall from Figure � that visually the
synthetic MWM looks very similar to the real trace� We compare
the marginals of MWM and WIG traces to that of the LBL�
TCP�� trace at three di�erent aggregation levels� From Figure �
observe that the MWM marginals are similar to that of the real
data trace� while the GaussianWIG marginals di�er signi�cantly�
We also observe that the WIG traces have a considerable number
of negative points� a result of the low mean and high standard
deviation of the real data trace�

We next compare the correlation matching abilities of the two
models� We compare the variance�time plots of the real data� the
MWM traces� and the WIG traces in Figure ��a�� The variance�
time plot estimates were obtained by averaging the empirical
variance�time plots of �� independent realizations of the models�
We observe that� as expected� both the MWM and WIG models
do a good job of matching the correlation structure of the real
data�

We plot the multifractal spectra �see Section �� of the LBL�
TCP�� data and the synthetic MWM trace in Figure ��b� �cal�
culations for the negative moments of the WIG data become
numerically unstable and hence the spectra for the WIG is not
included�� We observe that the spectra match extremely well
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Figure �� �a� Variance�time plot of the LBL�TCP�� data ���� the
WIGdata ���� and one realization of the MWM synthesis ���� �b�
Multifractal spectra of the LBL�TCP�� data and one realization of
the MWM synthesis�

except for large values of �� This corresponds to a close match
of the scaling of higher�order moments� but a somewhat less ac�
curate match of the scaling of the negative moments�

	�� Queuing results

Much e�ort has been exerted studying the e�ect of the corre�
lation structure on queuing performance ��� ������� Gaussian
models that capture the correlation structure of tra�c have been
proposed ��� ��� and theoretical results for the tail queue proba�
bility have been obtained ��� ��� ���� These models are in many
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cases appropriate for modeling data tra�c� For example� the
WIG model has been shown to capture the queuing behavior of
video tra�c well ����� For the WAN�LAN data traces that we
consider here� however� this is not the case�
The multiplicative structure of the MWM captures both the

correlations of the real data as well as the higher�order moments�
With its inherent approximately lognormal marginal distribu�
tion� it also comes close to matching the marginals of the real
data traces�
Intuitively� the more tra�c characteristics a model matches�

the better will it match the queuing behavior of real tra�c�
Hence� it is not surprising that a perfect �tting of second�order
correlations and marginals as done in ���� leads to a good match
of queueing behavior�
Here� we take a di�erent approach comparing two simple and

quite related models in their ability to capture the queueing be�
havior of the two real data sets� With this experiment we hope
to shed some light on the impact of marginals and higher�order
correlations on queuing behavior�
In all experiments� data traces are fed as input to an in�nite

length single�server queue with link capacity ��� bytes�unit time�
We estimate the tail queue probabilities of the various data traces
as bPi�Q � x� �

number of time instants Q � x

total time duration of trace i
� ����

We also provide con�dence intervals with con�dence level of ��"
for the estimated queue distribution ���L�#L

i��
bPi�Q � x�� where

L is the total number of traces� assuming that it is a Gaussian
random variable �����
With both real traces� we performed the same queuing ex�

periment� We �rst trained the MWM and WIG models on the
real traces as described in Section ���� We then synthesized ���
MWM and WIG traces of length ��	� fed them as input to our
theoretical queue and obtained their queuing behavior� Recall
that both the WIG and MWM capture the mean� variance and
correlation structure of the real data�
In Figure ��a� we compare the average queuing behavior of

the MWM and WIG traces to that of the real trace LBL�TCP���
We observe that the MWM traces match the queuing behavior
of the real data trace much better than the WIG traces� From
Figure � we notice that the WIG data traces have a considerable
number of negative data points� This is because the LBL�TCP��
data set has a large ratio of standard deviation to mean� which
when modeled by a Gaussian process leads to a large fraction
of data points going negative� In order to test whether these
negative values are the cause for the poor performance of the
WIG model� we set negative values to zero in the WIG traces
and obtained the queuing behavior of these new traces� We call
the new data traces WIG�� We see from Figure ��a� that the
queuing performance of the WIG� traces is not substantially
better than that of the WIG traces�
Thus� we conclude that the Gaussian WIG traces do not give

a good approximation to the queuing behavior of the real data
set in spite of capturing the correlation structure of the real data
trace� Furthermore� the ad hoc procedure of setting all negative
values to zero does not improve matters� In fact� the ad hoc
procedure used in creating the WIG� data traces destroys the
statistics of the traces� Other ad hoc procedures like excluding
all negative data points or setting all negative points to their
absolute value also destroy the statistics of the traces� This re�
veals some of the problems associated with Gaussian models for
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Figure �� Comparison of the queuing performance of real data traces
with those of synthetic WIG and MWM traces� In �a�� we observe
that the MWM synthesis matches the queuing behavior of the LBL�
TCP�� data closely� while the WIG synthesis does not� Even when
negative values of the WIG data are set to � �WIG��� the WIG traces
do not come close to matching the correct queuing behavior� In �b��
we observe a similar behavior with the BC�pAug�� data�

modeling tra�c with marginals similar to those of the real data
traces considered here�
The results for the real trace BC�pAug�� are shown in Figure

��b� and are similar to those for the LBL�TCP�� trace� Clearly�
the MWM again performs far better than the WIG model in
capturing the queuing behavior of the real data�
These queuing experiments indicate that the correlation struc�

ture of tra�c is not the only factor that decides the queuing be�
havior of data tra�c� Since the MWM outperforms the WIG
model in matching queuing behavior� we conclude that the addi�
tional tra�c characteristics of real data captured by the MWM�
like marginals and higher order moments� have a substantial ef�
fect on the queuing behavior of tra�c with statistics similar to
the real data sets that we considered here�

	 MWM is a Cascade

We now link the MWM with the theory of cascades� The techni�
cal details in this section are not necessary for understanding or
applying the MWM and can be omitted on a �rst reading� Multi�
plicative cascades generalize the self�similarity of fractal models
such as fGn and fBm by o�ering greater �exibility and richer
scaling properties� including burstiness and scaling of higher�
order moments ���� ���� Identifying the MWM algorithm with
a multiplicative cascade allows us to bene�t from the accumu�
lated theoretical and practical knowledge of the �eld of multi�
fractals� including a precise understanding of the convergence of
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the MWM algorithm� properties of the marginal distributions�
advantages over monofractal fGn models� and a range of pos�
sible re�nements and extensions� For these reasons� we �nd it
useful to examine the MWM within the context of cascades and
multifractals�

The backbone of a cascade is a construction where one starts
at a coarse scale and develops details of the process on �ner
scales iteratively in a multiplicative fashion� The MWM is one
such cascade� as ���� and ���� reveal� In accordance with the
notation for cascades� setting

M�
� � U�

� and M i
ki �

�� � ����k
�

i��Ai���ki�� �

�
� � � i 
 n�

����
and substituting into ���� leads us to �see Figure ��a��

C�k� � ��nM�
�

nY
i��

Mi�ki � ����

with the ki and k
�

i de�ned in the same way as for �����

Our aim in this section is to both introduce and give an in�
tuitive understanding of cascades to the reader� After studying
the nature of the MWM�s marginals� we compare cascades with
Gaussian LRD processes such as the WIG� As already hinted
in the introduction� cascades such as the MWM are ideal for
modeling burstiness� We explain this here by developing the
multifractal formalism �for further details� see ������


�� Lognormal marginals

Multiplicative structures� in particular the product representa�
tion ����� naturally lead to lognormal marginals� If the M i

ki
are

all positive and identically distributed� then C�k� will be approx�
imately lognormal by the CLT� Figure � shows that Gaussian
modeling seems un�t in this network scenario! various other au�
thors make a case for marginal distributions� including the log�
normal� with tails that are much heavier than the Gaussian ���� p
����� ����� We do not claim that the lognormal is appropriate for
all tra�c at all scales� and for a limited number of scales a cas�
cade signal can behave di�erently from a lognormal� However�
this link between cascades and useful marginal models for tra�c
points to the viability of cascades for providing realistic tra�c
models�


�� Cascades vs� fGn

There is a fundamental di�erence between cascade modeling and
modeling via self�similar processes such as fGn or the WIG� which
treat tra�c as a mean rate superimposed with fractal noise� Ad�
ditive self�similar models 	hover
 around the mean with occa�
sional outbursts in both positive and negative directions� while
multiplicative cascades 	sit
 just above the zero line and emit
occasional positive jumps or spikes� In mathematical terms this
distinction is best captured by examining negative moments� for
self�similar models� these are the negative moments of the fractal
noise� hence they capture uninterestingly small variations around
the mean! for cascades� on the other hand� these are the negative
moments of the process itself� so they capture unnaturally small
values and provide useful information�


�� Measuring burstiness

For the ease of notation let kn�
�n � t mean that t �

�kn�
�n� �kn � ����n� and n��� The strength of growth� also

called the degree of H�older continuity� at time t of a process Y �t�
�that corresponds toD�t� of the MWM� with positive increments
can be characterized by

��t� � lim
kn��n�t

�nkn where

�nkn � �
�

n
log�

��Y ��kn � ����n�� Y �kn�
�n�

�� � ����

The smaller the ��t�� the larger the increments of Y � and the
	burstier
 it is at time t� The frequency of occurrence of a given
strength �� as visible from an analysis on coarse scales can be
measured by the multifractal spectrum�

f��� �� lim
���

lim
n��

�

n
log�$fkn � �� � � � � �n � � ����

� �nkn � ��� 
� �� 
�g�

By de�nition� f takes values between � and � and is often shaped
like a � and concave� but not always� The smaller f��� is� the
	fewer
 points t will show ��t� � �� If � denotes the value ��t�
assumed by 	most
 points t then f��� � ��
Note that this analysis via increments ���� is su�cient pro�

vided Y �t� has no polynomial trends� If� on the other hand�
polynomial terms are present� then the increment�analysis will
yield f��� � � for � � k � IIN where k is the order of the �rst
non�vanishing derivative of Y � Then one has to eliminate the
polynomial in�uence� a� via wavelets or� b� by subtracting the
trend if known� The known trend for self�similar processes is
none other than the 	mean arrival rate
�
It is� therefore� important to mention that our analysis of real

traces in Section � shows no integer scaling exponent ��t�� except
for ��t� � � for a small number of t� that is� f��� � �� Thus�
we conclude that polynomial trends are not present in the real
tra�c traces studied here� Since we did not remove any trend
from the real data prior to our analysis� this result suggests that
the data is not well characterized by self�similar models�


�� Higher�order moments and the MF spec�
trum

Cascades such as the MWM possess rich multifractal spectra�
Unlike cascades� the strong self�similarity of the fBm ��� forces it
to have a trivial multifractal behavior� To be precise� for the fBm�
��t� � H for all t� To demonstrate this� we will use information
about the scaling of higher�order moments of the two types of
processes to obtain their multifractal spectra�
Let us de�ne

T �q� � lim
n��

�

�n
log� IE �Sn�q�� � where ����

Sn�q� �

�n��X
kn��

��Y ��kn � ����n�� Y �kn�
�n�

��q

�

�n��X
kn��

�n�
n
kn �

Note that T is always concave� since log� IESn�q� is concave� For
a typical plot of T and f see Figure � �b� and �c��
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Figure �� �a�� The MWM translates immediately into a multiplicative cascade in the time domain �cf� ��
��� �b� �� �c�� We demonstrate the
Legendre transform T �� T � in the simple case of concave� di�erentiable functions such as the spectra of a typical MWM ����� with p 
 �����
H 
 ����� Set 	 
 T �
q�� then T �
	� is such that the tangent at 
q� T 
q�� passes through 
���T �
	��� In other words� �T �
	� � q	 
 T 
q��
By symmetry� the tangent at 
	� T �
	�� has slope q and passes through 
���T 
q��� There are two notable special values of q� Trivially�
T 
�� 
 ��� whence the maximum of T � is �� In addition� every positive increment process has T 
�� 
 �� whence T	 touches the bisector�

The multifractal spectrum f��� and T �q� are closely related as
the following instructive hand�waving argument shows� Group�
ing in the sum Sn�q� of ���� the terms according to �nkn � ��
and using ���� we get

Sn�q� �
P

�

P
�n��

���n��
q
�
P

� �
nfG�����nq�

� ��n inf��q��fG�����

����

We conclude that we must 	expect
 T �q� to equal inf��q� �
fG����� For the special case of an MWM process� i�e�� Y � D�
it can be shown �see ����� that the dual relation holds� This
relation is called the multifractal formalism and reads

f��� � T ���� �� inf
q
�q�� T �q��� ����

Simple calculus shows that T ���� � q� � T �q� at � � T ��q�
provided T ���q� � �� This relation via the Legendre transform
T � is typical of the theory of large deviations ����� The goal
there is to establish relations such as ���� under most general
assumptions� To use the correct terminology� f is the rate func�
tion of a so�called large deviation principle �LDP�� it measures
how frequently or how likely the observed �nkn deviates from the
	expected value
 ��
In order to estimate T �q� from data� it is customary to use the

approximation ��nT �q� � Sn�q�� For the MWM this is equivalent
to

��jT �q� �

�j��X
k��

j��j��Uj�kj
q � ����

Any linear �t of logS�j��q� against j will give the slope T �q��
Let us calculate T �q� for the MWM model� i�e�� Y � D� Using

independence of the multipliersM i
ki

and denoting by
P
� the sum

over all kn � �� ���� �n � � we �nd

IE�Sn�q�� �
�X
IE�Mn

kn�
q � � � IE�M�

k��
q � IE�M�

� �
q

�

�X
IE�M �n��q � � � IE�M ����q � IE�M�

� �
q

� IE�M�
� �

q � �n �

nY
i��

IE
	
M �i�


q
� ����

In the second step we made use of the fact that the multipliers
M i

ki
are identically distributed to M �i�� To this we add the fact

that the moments of theM �i� converge to the ones of the limiting
random variable M for the next equation� and end by assuming
that M � �� � A��� with A being ��distributed as in ���� to
obtain�

MWM� T �q� � ��� log� IE�M
q� ����

� ��� log�
%�p� q�%��p�

%��p� q�%�p�
if q � �p�

and T �q� � �� if q 
 �p�

The function T �q� is a simple statistical description of the pro�
cess that captures marginal information� but which also governs
the 	burstiness
 through the multifractal formalism� It must be
emphasized here that the multifractal parameters T �q� of the
MWM process do not necessarily imply that the process can�
not be modeled parsimoniously� For example� in the case of the
MWM� the ��distributions for the multipliers are controlled by
the parameters pj ����� If one replaced the right side of ���� by
the powerlaw for fGn then all values T �q� would be determined
by H �����

Now let us compute T �q� for the self�similar fBm� From ���
we �nd

IE

�n��X
kn��

jB��kn � ����n��B�kn�
�n�jq

� �nIE
�
jB���n�jq

�
� �n�nqH IE �jB���jq � ����

which yields for fBm

fBm� T �q� �

�
qH � � for q � ���
�� for q 
 ���

����

This is probably the most compact way to express the
monofractal character of fBm� taking the Legendre transform
of T shows that fBm possesses only one degree of 	burstiness

���t� � H� which is omnipresent �compare also �����


�	 Multifractal scaling of moments and LRD

The multifractal scaling exponent T ��� of a process Y is closely
related to the LRD parameter H � since both measure the power�
law behavior of some second�order statistics� More precisely�
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T ��� measures the scaling behavior of the second sample mo�
ments ����� while H ��� can be estimated from the scaling of the
sample variance�
For a process Y with zero�mean increments Z this can be made

precise� Let us denote resolutions by m � ��n� We de�ne
Z�m� such that mZ�m� is the increment of Y at resolution m�
From Section ��� we �nd �rst that var�Z�m��� m�H��� Next�

���� gives ���� gives ���n�T ��� � IE
P

k������n�� jmZ
�m�
k j� �

�n����n�IEjZ�m�j� � const � ��nvar�Z�m��� Comparing the ex�
ponents of ��n we �nd T ��� � � � ��H � ��� or�

H �
T ��� � �

�
for zero�mean processes� ����

This is in agreement with the theoretical formulas ���� and
���� for the spectra of MWM and fBm� respectively�
For multifractal measures such as the MWM a �rst di�culty

in establishing a relation between H and T ��� arises from the
fact that these processes are not second�order stationary� So�
LRD cannot be de�ned as usual through the decay of the auto�
correlations� However� alternative fractal properties� such as the
decay of aggregate variances �Section ���� or wavelet coe�cients
�Section ����� which are equivalent to LRD in the presence of
second�order stationarity� can still be de�ned and calculated�
leading to the same result �����


 Conclusions

The MWM provides a new multiscale tool for synthesis of non�
Gaussian LRD tra�c� Computations involving the MWM are
extremely e�cient � synthesis of a trace of N sample points
requires only O�N� computations� In fact� synthesis of a trace
of length ��� data points takes just � seconds of workstation cpu
time� The parameters of the MWM� numbering approximately
logN � are identical in number to the WIG model and are sim�
ple enough to be either inferred from observed data or chosen
a priori� We can reduce the number of parameters further by
developing a parametric characterization of the wavelet energy
decay across scale�
With the MWM and WIG models� we have been able to �t

actual tra�c traces� and have developed preliminary queueing
results that demonstrate the importance of the nonGaussian na�
ture �including scaling of higher�order moments� of tra�c in de�
termining queueing performance�
Apart from being a useful tool for fast synthesis of realistic

data tra�c� the MWM is a promising analysis tool for the net�
work researcher� Further research could make the MWM viable
for data prediction� The parameters of the MWM could also be
used to capture the e�ect of di�erent protocols on shaping data
tra�c �e�g�� the TCP protocol�� In short� the use of the MWM
in real�time network protocols and control algorithms seems very
promising�
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