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Abstract

In this paper, we develop a simple and powerful multiscale model
for the synthesis of nonGaussian, long-range dependent (LRD)
network traffic. Although wavelets effectively decorrelate LRD
data, wavelet-based models have generally been restricted by a
Gaussianity assumption that can be unrealistic for traffic. Us-
ing a multiplicative superstructure on top of the Haar wavelet
transform, we exploit the decorrelating properties of wavelets
while simultaneously capturing the positivity and “spikiness” of
nonGaussian traffic. This leads to a swift O(N) algorithm for
fitting and synthesizing N-point data sets. The resulting model
belongs to the class of multifractal cascades, a set of processes
with rich statistical properties. We elucidate our model’s ability
to capture the covariance structure of real data and then fit it
to real traffic traces. Queueing experiments demonstrate the ac-
curacy of the model for matching real data. Our results indicate
that the nonGaussian nature of traffic has a significant effect on
queuing.

1 Introduction

Traffic models play a significant role in the analysis and charac-
terization of network traffic and network performance. Accurate
models enhance our understanding of these complex signals and
systems by allowing us to study the effect of various model pa-
rameters on network performance through simulation.

The presence of long-range dependence (LRD) in modern net-
work traffic was demonstrated convincingly in the landmark
paper by Leland et. al. [1]. There, measurements of traffic
load on an Ethernet were attributed to fractal behavior or self-
similarity, i.e., to the fact that the data “looked statistically
similar” (“bursty”) on all time-scales. These features are inade-
quately described by classical traffic models, such as Markov or
Poisson models. In particular, the LRD of data traffic can lead
to higher packet losses than that predicted by classical queuing
analysis [1, 2].

These findings were immediately followed by the development
of new fractal traffic models [3-5]. The fractional Brownian mo-
tion (fBm), the most broadly applied fractal model, is the unique
Gaussian process with stationary increments and the following
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scaling property for all a > 0

B(at) ¥ o B(t), (1)

with equality in (finite-dimensional) distribution. The increment
process G(k) = B(k+1)— B(k), called fractional Gaussian noise
(fGn), has an autocorrelation of the form

2)

The parameter H, 0 < H < 1, is known as the Hurst parameter.
It simultaneously rules the large-scale behavior and the degree
of local “spikiness.” In particular, for all ¢

2
g
ralk] = 5 (Ik + 2H = 20kPH + |k — 127).

B(t+5) = B(t) = s (3)
(more precisely, B(t + s) — B(t) is a zero-mean Gaussian process
of variance s?#), meaning that fBm has “infinite slope” every-
where. Processes approximating fBm/fGn can be synthesized
almost effortlessly in the wavelet domain due to the amazing
decorrelating effect of the wavelet transform [6].

A strong argument for the fBm/fGn models in networks is
that in many cases traffic can be viewed as the superposition
of a large number of independent individual ON/OFF sources,
with the ON durations heavy-tailed [7,8]. In this case, sub-
tracting the mean arrival rate and normalizing properly, the
aggregated ON/OFF sources (cumulative arrivals) converge to
Gaussian fBm by the central limit theorem (CLT) [1,3]. A “self-
similar” traffic arrival model (of the increments process) is, thus,
simply an “fGn+mean” model with given variance and H. The
fBm /fGn models have found wide use in networking, since their
Gaussianity and strong scaling (1) allows analysts to perform
analytical studies of queueing behavior [9-13].

Unfortunately, the fBm/fGn models have severe limitations
for network traffic applications. First, real-world traffic traces
do not exhibit the strict self-similarity of (1) or (2) and are at
best merely asymptotically self-similar. In other words, the sin-
gle parameter H is not sufficient to capture the complicated cor-
relation structure of real network processes. Indeed, convincing
evidence has been produced establishing the importance of short-
term correlations for buffering [16-18] and so-called relevant time
scales have been discovered [19]. The wavelet-domain indepen-
dent Gaussian (WIG) model generalizes fBm/fGn by allowing a
more flexible scaling relation than (1). By matching both long
and short-term correlations, the WIG model more completely
matches the correlation structure of a target data set [15].
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Figure 1: Bytes-per-time arrival process at different aggregation levels for (a) wide-area TCP traffic at the Lawrence Berkeley Laboratory
(trace LBL-TCP-3) [14], (b) one realization of the state-of-the-art wavelet-domain independent Gaussian (WIG) model [15], and (c) one
realization of the multifractal wavelet model (MWM) synthesis. The top, middle and bottom plots correspond to bytes arriving in intervals of
6 ms, 12 ms and 24 ms respectively. The top and middle plots correspond to the second half of the middle and bottom plots, respectively, as
indicated by the vertical dotted lines. The MWM traces closely resemble the real data closely, while the WIG traces (with their large number

of negative values) do not.

Second, the Gaussianity of fBm/fGn/WIG models can be un-
realistic for certain types of traffic, for instance when the stan-
dard deviation of the data exceeds the mean. In this case, the
fBm/fGn/WIG output signals take on a considerable number of
negative values (see Figure 1).

Third, in many networking applications, we are nowhere near
the Gaussian limit, in particular on small time scales. Indeed,
various authors have observed marginals that differ substantially
from Gaussian. Usually these distributions have been observed to
be heavy tailed [20, p. 364], [21]. Consequently, methods aimed
at fitting marginals have been developed [22,23]. Also, more ver-
satile models such as fractional ARIMA [24] have been applied
towards better matching the short-range and long-range correla-
tion structure present in real traces.

In this paper, we propose a new non-linear model for network
traffic data. The multifractal wavelet model (MWM) is based on
a multiplicative cascade in the wavelet domain that by design
guarantees a positive output. Since each sample of the MWM
process is obtained as a product of several positive independent
random variables, the MWM'’s marginal density is approximately
lognormal, a heavier-tailed distribution than the Gaussian. The
MWM is thus a more natural fit for positive arrival processes,
especially those with a standard deviation much larger than the
mean (as observed in the traces we have studied).

In its simplest form, the MWM is closely related to the wavelet-
based construction of fBm/fGn, having as few parameters (mean,
variance, H). However, the MWM framework boasts the flexi-
bility to additionally match the short-term correlations like the
WIG model.

The MWM has a bursty demeanor that matches that of real
traffic much more closely than fBm/fGn. The TCP traffic we
have studied here exhibits local scaling similar to (3), but with
an exponent H; that depends on ¢. This has been termed mul-
tifractal behavior and was reported for the first time in [25] and
subsequently in [26-29]. Amazingly, the statistical properties of
H, as a random variable in ¢ can be described compactly through
a function T'(q) that controls the scaling behavior of the sample
moments of order ¢. This powerful relation, called the multifrac-
tal formalism, ties burstiness, higher-order dependence structure,
and moments of marginals together in one unified theory.

Fitting the MWM to real traffic traces results in an excellent
match, far better than the WIG model, visually (see Figure 1)
and, as we will see, in the multifractal partition function T'(q),
the burstiness as measured by the multifractal spectrum, the
marginals, and the queueing behavior. Since these properties all
depend on the small time-scale behavior, it appears that the mul-
tiplicative MWM approach is more appropriate than an additive
Gaussian one.
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In this paper, we summarize the impact of LRD on network-
ing in Section 2. After introducing the wavelet transform and
describing the WIG model in Section 3, we derive the MWM in
Section 4. Section 5 reports on the results of simulation exper-
iments with real data traces. We give an intuitive introduction
to multifractal cascades in Section 6 and close with conclusions
in Section 7.

2 Long-range Dependence in Network
Traffic

The discovery of LRD in data traffic [1,14] has incited a revo-
lution in network design, control and modeling. Intuitively, the
strong correlations present in a LRD process are responsible for

s “bursty” nature. Thus, LRD traffic arrives in bursts that,
upon entering a queue, cause excessive buffer overflows that are
not predicted by traditional non-LRD traffic models such as Pois-
son and Markov models [2].

2.1 Long-range dependence (LRD)

Consider a discrete-time, wide-sense stationary random pro-
cess {X;, t € Z} with auto-covariance function rx[k] =
cov(Xy¢, Xiyr). A change in time scale can be represented by
forming the aggregate process Xt(m), which is obtained by aver-
aging X; over non-overlapping blocks of length m replacing each
block by its mean

Xtm7m+1 e
4

Denote the auto-covariance of X by r(m) [k]. The process X is
said to exhibit LRD if its auto-covariance decays slowly enough
to render Y.,° _ rx[k] infinite [30]. Equivalently, the power

spectrum Sy (f) is singular near f = 0 and m rg(m) 0] » o
asm — 00.

An important class of LRD processes are the asymptotically
second-order self-similar processes, which may be defined by the
property rx[k] ~ k*7=2 for some H € (1/2,1), or equivalently
by [30]

+ Xtm

xim™ =

var(X (™)) = r(™M[0] » m2H -2 (5)

as m — o0o. In words, these processes “look similar” on all scales,
at least from point of view of second-order statistics. The fGn,
is such a process where the Hurst parameter H is the same as in
(1).

To estimate H by the wvariance-time plot method, we fit a
straight line through the plot of an estimate of logvar(X (™)
against log(m). More reliable estimators have also been de-
vised [24], in particular an unbiased one based on wavelets [31].

2.2 Impact of LRD on networking

The pre-eminent LRD model at present is the f{Gn. Its popularity
stems from the fact that it is a second-order self-similar Gaussian
process (2), and thus is analytically tractable. In addition, it is
completely described by just two parameters — variance and
H. When fGn is input to an infinite-length queue with constant
service rate, the tail queue distributions decay asymptotically
with a Weibullian law

PlQ > z] ~ exp(—6x2*2H),

(6)
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with § a positive constant that depends on the service rate at
the queue [10,11]. The decay of the tail queue distribution for
fGn with H > 1/2 is much slower than the exponential decay
predicted by short-range dependent (SRD) classical models [2].
This corresponds to the case H = 1/2.

Even though (6) shows that LRD processes have higher tail
queue probabilities than SRD processes, there is still an ongoing
discussion on the effect of LRD on queuing, with researchers
arguing both for and against its importance [17-19,32-34].

3 Wavelets and LRD Processes

3.1 Wavelet transform

The discrete wavelet transform provides a multiscale signal repre-
sentation of a one-dimensional signal ¢(t) in terms of shifted and
dilated versions of a prototype bandpass wavelet function (¢)
and shifted versions of a lowpass scaling function ¢(t) [35]. For
special choices of the wavelet and scaling functions, the atoms

V5. (t)
bjk(t) = (7)

form an orthonormal basis, and we have the signal representation
[35]

2112 4 (27t — k),

212 ¢(2t — k), jkeZ

oD wik ()

j=Jo k

D gk bao k() + (8)
k

with wj, = [e(t) t)dt, and ugyr = [e(t
Without loss of generahty, we will assume Jy = 0.

In this representation, k& indexes the spatial location of anal-
ysis and j indexes the scale or resolution of analysis — larger
j corresponds to higher resolution with 7 = 0 indicating the
coarsest scale or lowest resolution of analysis. In practice, we
work with a sampled or finite-resolution representation of c¢(t),
replacing the semi-infinite sum in (8) with a sum over a finite
number of scales 0 < 7 <n —1, n € Z. Using filter bank tech-
niques, the wavelet transform and inverse wavelet transform can
be computed in O(N) operations for a length-N signal. For more
information on wavelet systems and their construction, see [35].

In the Haar wavelet transform (see Figure 2), the prototype
scaling and wavelet functions are given by

¢J07

1, 0<t<1/2
o(t) = 1, 0St<land P(t) =< -1, 1/2<t<1
0, else
0, else.

The Haar scaling and wavelet coefficients can be recursively com-
puted via [35]

(wj2k + wj2k+1),
(Wj2k — Wj2k+1)-

— —-1/2
Uj—1,k = 2 /
— —-1/2
Wji—1,k = 2 /

9)

3.2 Modeling LRD data

Wavelets serve as an approximate Karhunen-Loeve or decorre-
lating transform for fBm [6], fGn, and more general LRD sig-
nals [36]. Hence, modeling and processing of these signals in the
wavelet domain is often more efficient and powerful than in the
time domain.
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Figure 2: (a) The Haar scaling and wavelet functions ¢; . (t) and v; 1 (t). (b) Binary tree of scaling coefficients from coarse to fine scales. (c)
Recursive scheme for calculating the Haar scaling coefficients Uj 1,21 and Ujy1,2p41 at scale j + 1 as sums and differences of the scaling and
wavelet coefficients U, and W), at scale j (normalized by 1/v/2). For the WIG model, the W, ’s are mutually independent and identically

distributed within scale according to W, ~ N(0,07).

The variance of the wavelet coefficients of continuous-time fBm
decays with scale according to a power law in H [6]. For fGn, an
exact power-law in H also holds for decay of the Haar wavelet
coefficient variances [36]. This power-law decay, along with the
decorrelation property of wavelets, has led to fast, robust algo-
rithms for estimation [36,37].

Gaussian LRD processes can be approximately synthesized by
generating wavelet coefficients as independent zero-mean Gaus-
sian random variables, identically distributed within scale ac-
cording to W ~ N(0,0%),! with o7 the wavelet-coefficient vari-
ance at scale j [15].

A power-law decay for the af’s leads to approximate wavelet
synthesis of fBm or f{Gn [6]. However, while network traffic may
exhibit LRD consistent with fBm or fGn, it may have short-
term correlations that vary considerably from pure fBm or fGn
scaling. Such LRD processes can be modeled by setting O'JQ- to
match the measured or theoretical variances of the wavelet coef-
ficients of the desired process [15]. We call the resulting model
the wavelet-domain independent Gaussian (WIG) model [15] (see
Figure 2(c)). For a length-N signal, the WIG is characterized by
approximately log, N parameters.

The WIG model assumes Gaussianity even though network
traffic signals (such as loads and interarrival times) can be
highly nonGaussian. Not only are these signals strictly non-
negative, but they can exhibit “spiky” behavior corresponding
to a marginal distribution whose right-side tail decays much
more slowly than that of a Gaussian. We seek a more accurate
marginal characterization for these spiky, non-negative LRD pro-
cesses, yet wish to retain the decorrelating properties of wavelets
and the simplicity of the WIG model.

3.3 Modeling non-negative data with the Haar
wavelet

In order to model non-negative signals using the wavelet trans-
form, we must develop conditions on the scaling and wavelet
coefficient values for ¢(t) in (8) to be non-negative. While cum-
bersome for a general wavelet system,? these conditions are sim-
ple for the Haar system (see Figure 2), on which we focus for the

1We use capital letters when we consider the underlying variables to be
random.

2The conditions are straightforward also for certain biorthogonal wavelet
systems.

balance of this paper.
Since the scaling coefficients w; , represent the local mean of
the signal at different scales and shifts, they are non-negative if
and only if the signal itself is non-negative; that is, ¢(t) > 0 <
ujr > 0, V j, k. This condition leads us directly to constraints on
the Haar wavelet coefficients. Solving (9) for u; 2, and uj 2x+1,

we find
Uik = 272(uj1p +wio1k),

10
Uiskpr = 272 (ujoik — wioip), (10)

which corresponds to moving down the tree in Figure 2(b) one
scale level at a time.

Now, combining (10) with the constraint u; > 0, we obtain
the condition

c(t) >0 |wjkl <ujk, Y 5, k. (11)

4 Multifractal Wavelet Model

Let us summarize our basic wavelet-based approach for modeling
nonGaussian LRD network traffic. As with the WIG we will
characterize the Haar wavelet variance decay as a function of
scale to capture the short-range and long-range correlations. In
contrast to the WIG, we will enforce the constraint (11) to ensure
the non-negativity of the model output.

To keep things clear, we will introduce three different pro-
cesses: the continuous-time model output ¢(t), its integral D(t),
and a discrete-time approximation C[k] to ¢(t). These three sig-
nals are related by

(k+1)2"
ClH = /k oty dt = D ((k+1)2") — D (k2").  (12)

9-n
Here, ¢(t) and D(t) play roles analogous to f{Gn and fBm, respec-
tively.

For notational simplicity, we will assume that both ¢(¢) and
D(t) live on [0, 1] and that C[k] is a length-2" discrete-time sig-
nal. Thus, there is only one scaling coefficient Upp in (8). (A
more general case is treated in [29].) We will primarily focus on
C[k].

For the Haar wavelet transform, C[k] relates directly to the
finest-scale scaling coefficients:

C[K] 2"2Unr, k=0,1,...2" — 1. (13)
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Figure 3: MWM construction: At scale j, generate the multiplier
Aj i ~ B(pj,pj), and then form the wavelet coefficient as the product
Wi = AjxUjk. Atscale j+1 of this tree, form the scaling coefficients
in the same manner as the WIG model in Figure 2.

4.1 The model

The positivity constraints (11) on the Haar wavelet coefficients
suggest a very simple multiscale, multiplicative signal model for
positive processes. In the multifractal wavelet model (MWM) we
compute the wavelet coefficients recursively by

Wik = Ajr Ujpk, (14)
with A;; a random variable supported on the interval [—1,1].
Together with (10), we obtain (see Figure 3)

Ujor = 2_1/2(1+Aj+17k)Uj_17k, (15)
Ujoksr = 272(1— Ajia p) Ujo1 g
See [38] for a similar model used as an intensity prior for wavelet-
based image estimation.
To generate a realization of an MWM process, we perform the
following coarse-to-fine synthesis:

1. Set j = 0. Fix or compute the coarsest (root) scaling coef-
ficient Uy, establishing the global mean of the signal.

2. At scale j, generate the random multipliers 4; ; and calcu-
late each W, j, via (14) for k =0,...,29 — 1.

3. At scale j, use U, and Wjy in (10) to calculate Ujy1 2k
and Ujii12k41, the scaling coefficients at scale j + 1, for
k=0,...,29 — 1.

4. Tterate steps 2 and 3, replacing j by 7 + 1 until the finest
scale j = n is reached.

We can express the signal C[k] directly as a product (or cas-
cade) of the random multipliers 1+ A; ;. Decomposing each shift

. . . —1 —1—i .
k into a binary expansion k = . ki2"7'7% we can write

n—1 k'
_o-n/27 . _o-n (L4 (=1)% Aix,)
Clk] = 272U, = 27" Upp 1}) 5 . (16)
with
i—1 ) )
ko=0, and k=) k27'7, i=1,...,n—1.  (17)

=0

Table 1: Comparison of the tree-based WIG and MWM models. For
approximating a signal with a strict fGn covariance structure, both
the WIG and MWM require only three parameters (mean, variance,
and H).

| WIG | MWM |
Additive Multiplicative
Gaussian Asymptotically Lognormal
LRD matched LRD matched
Monofractal Multifractal
logy N + 2 parameters log, N + 2 parameters
O(N) synthesis O(N) synthesis

This result can be derived by iteratively applying (15) [29].

Since the scaling coefficients are generated simultaneously with
the wavelet coefficients, there is no need to invert the wavelet
transform. The finest-scale scaling coefficients U, ;. are in fact
the MWM output process (13). The total cost for computing N
MWM signal samples is O(N). In fact, synthesis of a trace of
length 2'® data points takes just 8 seconds of workstation cpu
time.

4.2 [ multipliers

All that remains is to choose an appropriate distribution for the
multipliers A; ;. For simplicity of development, we will assume
that the A;;’s are mutually independent and independent of
Uj k. We will also assume that the A;;’s are symmetric about
0 and identically distributed within scale; it is easily shown that
these two conditions are necessary for the resulting process to
be first-order stationary [29]. This leads us to the choice of the
symmetric beta distribution, B(p,p) (see Figure 4) for the A;;’s

Aj i ~ B(pj,pj), (18)
with p; the beta parameter at scale j. The beta distribution
is compactly supported, easily shaped, and amenable to closed-
form calculations. The variance of a random variable A ~ 3(p, p)

1S
1

2p+1°

In the MWM, the p; play a role analogous to the UJQ. of the WIG
model. With one beta parameter per wavelet scale, the MWM
uses approximately log, NV parameters for a trace of length N.
Distributions with more parameters (e.g., discrete distributions
or mixtures of betas) could be used to capture high-order data
moments at a cost of increased model complexity [29]. See Table
1 for a comparison of the WIG and MWM properties.

var[A] = (19)

4.3 Covariance matching

The p;’s allow us to control the wavelet energy decay across scale,
since

var(Wj_Lk) o

var(Wi.k)

2 var [Aj—l,k] _ 2p]' +1
var[A; ] (1+var[4; 14])  pj1+1

(20)

Thus, to model a given process with the MWM, we can select
the p;’s to match the signal’s theoretical wavelet-domain energy
decay. Or, given training data, we can select the parameters
to match the sample variances of the wavelet coefficients as a
function of scale.
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Figure 4: Probability density function of a ((p,p) random variable
A. For p = 0.2, A resembles a binomial random variable, and for
p = 1 it has a uniform density. For p > 1 the density appears like a
truncated Gaussian density, and as p increases, the density resembles
a Gaussian density more and more closely.

To complete the modeling, we must choose the parameter py
of the model and characterize the distribution of the coarsest
scaling coefficient Up¢. From (14) and (19) we obtain

(2po + L)var(Wo,0) = IE[U] o], (21)
which allows us to obtain py from estimates of IE[Uf,] and
var(W070).

To precisely model Uy, we would have to use a strictly
non-negative probability density function to ensure the non-
negativity of the MWM output. However, in practice a Gaus-
sian model at the coarsest scale (requiring IE[Up o] and var[Up o])
is usually sufficient if enough scales are employed (so that
IE[Ug,0] > standard deviation of Up ).

5 Experimental Results

In this section, we perform experiments with real data traces to
demonstrate the MWM’s capacity to capture important proper-
ties of real data. As expected, the MWM does an excellent job
in capturing the correlation structure of real data sets. We also
observe that the MWM performs well in matching the marginals
and higher-order moments of real data. Recall that the Gaussian
WIG model is also capable of capturing the correlation structure
of training data. We thus have two models, both of which capture
the correlation structure of real data but with the MWM com-
ing closer to matching the marginals and higher-order moments.
Equipped with these models, we are in an excellent position to
perform queuing experiments to study if the correlation struc-
ture is by itself sufficient to capture the queuing behavior of real
traffic.

5.1 Real data

We use two well-known real data traces in our experiments. The
first (LBL-TCP-3) contains two hours’ worth of wide-area TCP
traffic between the Lawrence Berkeley Laboratory and the rest
of the world [14]. This data contains the following informa-
tion about each packet: the time-stamp, (renumbered) source
host, (renumbered) destination host, source TCP port, destina-
tion TCP port, and number of data bytes. In our experiments we
use only the time-stamp and data bytes information. We form a
data trace by counting the number of bytes of packets that arrive
in consecutive time intervals of 6 ms and use the first 22° data
points in our simulation experiments. This trace has a sample
mean of 257.5 bytes/(unit time) and sample standard deviation
of 562.6 bytes/(unit time).
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The second real data set is one of the famous Ethernet data
traces collected at Bellcore Morristown Research and Engineer-
ing facility [1]. The trace (BC-pAug89) began at 11:25 on Au-
gust 29, 1989, and ran for about 3142.82 seconds (until 1,000,000
packets had been captured). As in the case of the LBL-TCP-3
data set, we obtain a data trace by summing the bytes of pack-
ets that arrived in consecutive time intervals of 2.6 ms. We use
the first 22° data points of this trace in our experiments. This
trace has mean 345.8 bytes/(unit time) and standard deviation
703.4 bytes/(unit time). The BC-pAug89 trace is approximately
a second-order self similar process with H = 0.79 [37].

5.2 Physical Interpretation

The MWM multipliers have a simple interpretation as recur-
sively partitioning the arriving bytes into smaller and smaller
time intervals. For instance, the value Up,¢ determines the total
number of bytes in the entire trace. The value Ay determines
how many of these packets will be placed in the first half of the
trace. The value A then determines how many of these bytes
will be placed in the first quarter of the trace, and so on.

When trained on real network data, the behavior of the mul-
tipliers A, ; changes with scale, with extremely low variance at
coarse scales and high variance at fine scales. Amazingly, this
is consistent with both the small-scale behavior of actual traffic
and the large-scale properties resulting from the superposition
of a large number of souces [7,8]. At fine scales multiplicative
schemes with large variances produce bursts like those in real
data (recall Figure 1). At coarse scales, the scaling coefficients
(which correspond to the arrival of traffic over large time scales)
involve only a handful of low-variance multipliers A4; ;. From
(15) we can write, for example, at the third-coarsest scale:

da U
Uso & %(1%40,0) (1+ A1)
fd U
~ 2D (14 Ao+ A1) (22)

2

Thus, for a fixed Uy at the coarsest scale, to a first-order ap-
proximation, the MWM is additive at the coarse scales provided
the random variables A; ; are small in amplitude. Moreover, the
A; i, are approximately Gaussian for these low-variance (high-
p) symmetric S multipliers [39]. Hence, coarse-resolution MWM
outputs will exhibit an additive, Gaussian-like behavior consis-
tent with that of the previously justified ON/OFF models and
notions of client behavior as a superposition of sources [7,8].

5.3 Matching of Real Data

In order to study how well the MWM and WIG models can
match real data, we train them on the the real data traces. To
fit the WIG and MWM models to the data, we use the procedure
outlined in Sections 3.2 and 4.3, which involves taking a Haar
wavelet transform of the real data and estimating the variances
0]2 of the wavelet coefficients at each scale. We estimate these
variances only at the 15 finest scales, because at coarser scales
there are not a sufficient number of coefficients to obtain good
variance estimates. As a result, we synthesize data traces of
maximum length 2! data points. For both the MWM and WIG,
we model the coarsest-scale scaling coefficient Up o as a Gaussian
random variable with mean and variance equal to the sample
mean and variance of the scaling coefficients of the real data
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Figure 5: Histograms of the bytes-per-times process at different aggregation levels for (a) wide-area TCP traffic at the Lawrence Berkeley
Laboratory (trace LBL-TCP-3) [14], (b) one realization of the WIG model, and (c) one realization of the MWM synthesis. The top, middle
and bottom plots correspond to bytes arriving in intervals of 6 ms, 12 ms and 24 ms respectively. Note the large probability mass over negative
values for the WIG model.

at this scale. With trained models in hand, we now generate
synthetic data traces.

Due to space constraints, we present fitting results only for

the LBL-TCP-3 trace. Recall from Figure 1 that visually the
synthetic MWM looks very similar to the real trace. We compare
the marginals of MWM and WIG traces to that of the LBL-
TCP-3 trace at three different aggregation levels. From Figure 5
observe that the MWM marginals are similar to that of the real
data trace, while the Gaussian WIG marginals differ significantly.
We also observe that the WIG traces have a considerable number
of negative points, a result of the low mean and high standard
deviation of the real data trace.

We next compare the correlation matching abilities of the two
models. We compare the variance-time plots of the real data, the
MWM traces, and the WIG traces in Figure 6(a). The variance-
time plot estimates were obtained by averaging the empirical
variance-time plots of 32 independent realizations of the models.
We observe that, as expected, both the MWM and WIG models
do a good job of matching the correlation structure of the real
data.

We plot the multifractal spectra (see Section 6) of the LBL-
TCP-3 data and the synthetic MWM trace in Figure 6(b) (cal-
culations for the negative moments of the WIG data become
numerically unstable and hence the spectra for the WIG is not
included). We observe that the spectra match extremely well

19
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17 8 o ¢ MWM
=< 13 -
E 0.6
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Figure 6: (a) Variance-time plot of the LBL-TCP-3 data “x”, the
WIGdata “0”, and one realization of the MWM synthesis “o”. (b)

Multifractal spectra of the LBL-TCP-3 data and one realization of
the MWDM synthesis.

except for large values of a. This corresponds to a close match
of the scaling of higher-order moments, but a somewhat less ac-
curate match of the scaling of the negative moments.

5.4 Queuing results

Much effort has been exerted studying the effect of the corre-
lation structure on queuing performance [2,17-19]. Gaussian
models that capture the correlation structure of traffic have been
proposed [1,15] and theoretical results for the tail queue proba-
bility have been obtained [9,11,40]. These models are in many



cases appropriate for modeling data traffic. For example, the
WIG model has been shown to capture the queuing behavior of
video traffic well [15]. For the WAN/LAN data traces that we
consider here, however, this is not the case.

The multiplicative structure of the MWM captures both the
correlations of the real data as well as the higher-order moments.
With its inherent approximately lognormal marginal distribu-
tion, it also comes close to matching the marginals of the real
data traces.

Intuitively, the more traffic characteristics a model matches,
the better will it match the queuing behavior of real traffic.
Hence, it is not surprising that a perfect fitting of second-order
correlations and marginals as done in [22] leads to a good match
of queueing behavior.

Here, we take a different approach comparing two simple and
quite related models in their ability to capture the queueing be-
havior of the two real data sets. With this experiment we hope
to shed some light on the impact of marginals and higher-order
correlations on queuing behavior.

In all experiments, data traces are fed as input to an infinite
length single-server queue with link capacity 800 bytes/unit time.
We estimate the tail queue probabilities of the various data traces

as
number of time instants Q > x

PlQ > 2] = (23)

total time duration of trace ¢
We also provide confidence intervals with confidence level of 90%
for the estimated queue distribution (1/L)SL | P[Q > z], where
L is the total number of traces, assuming that it is a Gaussian
random variable [41].

With both real traces, we performed the same queuing ex-
periment. We first trained the MWM and WIG models on the
real traces as described in Section 5.3. We then synthesized 480
MWM and WIG traces of length 2'°, fed them as input to our
theoretical queue and obtained their queuing behavior. Recall
that both the WIG and MWM capture the mean, variance and
correlation structure of the real data.

In Figure 7(a) we compare the average queuing behavior of
the MWM and WIG traces to that of the real trace LBL-TCP-3.
We observe that the MWM traces match the queuing behavior
of the real data trace much better than the WIG traces. From
Figure 5 we notice that the WIG data traces have a considerable
number of negative data points. This is because the LBL-TCP-3
data set has a large ratio of standard deviation to mean, which
when modeled by a Gaussian process leads to a large fraction
of data points going negative. In order to test whether these
negative values are the cause for the poor performance of the
WIG model, we set negative values to zero in the WIG traces
and obtained the queuing behavior of these new traces. We call
the new data traces WIG+. We see from Figure 7(a) that the
queuing performance of the WIG+ traces is not substantially
better than that of the WIG traces.

Thus, we conclude that the Gaussian WIG traces do not give
a good approximation to the queuing behavior of the real data
set in spite of capturing the correlation structure of the real data
trace. Furthermore, the ad hoc procedure of setting all negative
values to zero does not improve matters. In fact, the ad hoc
procedure used in creating the WIG+ data traces destroys the
statistics of the traces. Other ad hoc procedures like excluding
all negative data points or setting all negative points to their
absolute value also destroy the statistics of the traces. This re-
veals some of the problems associated with Gaussian models for
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Figure 7: Comparison of the queuing performance of real data traces
with those of synthetic WIG and MWM traces. In (a), we observe
that the MWM synthesis matches the queuing behavior of the LBL-
TCP-3 data closely, while the WIG synthesis does not. Even when
negative values of the WIG data are set to 0 (WIG+), the WIG traces
do not come close to matching the correct queuing behavior. In (b),
we observe a similar behavior with the BC-pAug89 data.

modeling traffic with marginals similar to those of the real data
traces considered here.

The results for the real trace BC-pAug89 are shown in Figure
7(b) and are similar to those for the LBL-TCP-3 trace. Clearly,
the MWM again performs far better than the WIG model in
capturing the queuing behavior of the real data.

These queuing experiments indicate that the correlation struc-
ture of traffic is not the only factor that decides the queuing be-
havior of data traffic. Since the MWM outperforms the WIG
model in matching queuing behavior, we conclude that the addi-
tional traffic characteristics of real data captured by the MWM,
like marginals and higher order moments, have a substantial ef-
fect on the queuing behavior of traffic with statistics similar to
the real data sets that we considered here.

6 MWM is a Cascade

We now link the MWM with the theory of cascades. The techni-
cal details in this section are not necessary for understanding or
applying the MWM and can be omitted on a first reading. Multi-
plicative cascades generalize the self-similarity of fractal models
such as fGn and fBm by offering greater flexibility and richer
scaling properties, including burstiness and scaling of higher-
order moments [25,29]. Identifying the MWM algorithm with
a multiplicative cascade allows us to benefit from the accumu-
lated theoretical and practical knowledge of the field of multi-
fractals, including a precise understanding of the convergence of
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the MWM algorithm, properties of the marginal distributions,
advantages over monofractal f{Gn models, and a range of pos-
sible refinements and extensions. For these reasons, we find it
useful to examine the MWM within the context of cascades and
multifractals.

The backbone of a cascade is a construction where one starts
at a coarse scale and develops details of the process on finer
scales iteratively in a multiplicative fashion. The MWM is one
such cascade, as (15) and (16) reveal. In accordance with the
notation for cascades, setting

. T+ (=1)%14; 4 4,
MO =0 and M,;i:( (=1) . 17’“—1),

0<i<n,
(24)
and substituting into (16) leads us to (see Figure 8(a))

Clk] = 27" Mg [ Mir.,

i=1

(25)

with the k; and &} defined in the same way as for (16).

Our aim in this section is to both introduce and give an in-
tuitive understanding of cascades to the reader. After studying
the nature of the MWM’s marginals, we compare cascades with
Gaussian LRD processes such as the WIG. As already hinted
in the introduction, cascades such as the MWM are ideal for
modeling burstiness. We explain this here by developing the
multifractal formalism (for further details, see [29]).

6.1 Lognormal marginals

Multiplicative structures, in particular the product representa-
tion (25), naturally lead to lognormal marginals. If the M, ,z are
all positive and identically distributed, then C[k] will be approx-
imately lognormal by the CLT. Figure 5 shows that Gaussian
modeling seems unfit in this network scenario; various other au-
thors make a case for marginal distributions, including the log-
normal, with tails that are much heavier than the Gaussian [20, p
364], [21]. We do not claim that the lognormal is appropriate for
all traffic at all scales, and for a limited number of scales a cas-
cade signal can behave differently from a lognormal. However,
this link between cascades and useful marginal models for traffic
points to the viability of cascades for providing realistic traffic
models.

6.2 Cascades vs. fGn

There is a fundamental difference between cascade modeling and
modeling via self-similar processes such as fGn or the WIG, which
treat traffic as a mean rate superimposed with fractal noise. Ad-
ditive self-similar models “hover” around the mean with occa-
sional outbursts in both positive and negative directions, while
multiplicative cascades “sit” just above the zero line and emit
occasional positive jumps or spikes. In mathematical terms this
distinction is best captured by examining negative moments: for
self-similar models, these are the negative moments of the fractal
noise, hence they capture uninterestingly small variations around
the mean; for cascades, on the other hand, these are the negative
moments of the process itself, so they capture unnaturally small
values and provide useful information.

6.3 Measuring burstiness

For the ease of notation let k,2~™" — ¢ mean that ¢t €
[kn27", (kn +1)27™) and n — oo. The strength of growth, also
called the degree of Hdlder continuity, at time t of a process Y (¢)
(that corresponds to D(t) of the MWM) with positive increments
can be characterized by

alt) = lim o where
kp2—m—t
1
ap = —ElogQ Y ((kn +1)27") =Y (kn27™)|.  (26)

The smaller the a(t), the larger the increments of Y, and the
“burstier” it is at time ¢. The frequency of occurrence of a given
strength «a, as visible from an analysis on coarse scales can be
measured by the multifractal spectrum:

flo) =l g,

1
ElogQ#{kn = 0,...,2" -1 (27)

ag €(a—e,a+e)}.

By definition, f takes values between 0 and 1 and is often shaped
like a N and concave, but not always. The smaller f(«) is, the
“fewer” points t will show a(t) ~ a. If @ denotes the value a(t)
assumed by “most” points ¢ then f(a) = 1.

Note that this analysis via increments (26) is sufficient pro-
vided Y'(¢) has no polynomial trends. If, on the other hand,
polynomial terms are present, then the increment-analysis will
yield f(a) = 1 for a = k € IN where k is the order of the first
non-vanishing derivative of Y. Then one has to eliminate the
polynomial influence, a) via wavelets or, b) by subtracting the
trend if known. The known trend for self-similar processes is
none other than the “mean arrival rate”.

It is, therefore, important to mention that our analysis of real
traces in Section 5 shows no integer scaling exponent «(t), except
for a(t) = 1 for a small number of ¢, that is, f(1) < 1. Thus,
we conclude that polynomial trends are not present in the real
traffic traces studied here. Since we did not remove any trend
from the real data prior to our analysis, this result suggests that
the data is not well characterized by self-similar models.

6.4 Higher-order moments and the MF spec-
trum

Cascades such as the MWM possess rich multifractal spectra.
Unlike cascades, the strong self-similarity of the fBm (1) forces it
to have a trivial multifractal behavior. To be precise, for the fBm,
a(t) = H for all t. To demonstrate this, we will use information
about the scaling of higher-order moments of the two types of
processes to obtain their multifractal spectra.

Let us define

() = lim g B[S.(¢)],  where  (29)
@) = 3 [V((ke + D27 — ¥ (k277
k,=0

2" —1
§ 2na£n .
k,=0

Note that T is always concave, since log, IES,(q) is concave. For
a typical plot of T and f see Figure 8 (b) and (c).
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Figure 8: (a): The MWM translates immediately into a multiplicative cascade in the time domain (cf. (25)). (b) — (c): We demonstrate the
Legendre transform T — T™ in the simple case of concave, differentiable functions such as the spectra of a typical MWM ((33) with p = 1.66,
H = .85). Set a =T'(q), then T*(«) is such that the tangent at (q,T(q)) passes through (0, —T*(«)). In other words, —T*(a) + qa = T(q).

By symmetry, the tangent at (o, T*(a)) has slope q and passes through (0,—T(q)).

There are two notable special values of q. Trivially,

T(0) = —1, whence the maximum of T is 1. In addition, every positive increment process has T'(1) = 0, whence T* touches the bisector.

The multifractal spectrum f(«) and T'(q) are closely related as
the following instructive hand-waving argument shows. Group-
ing in the sum S,(g) of (28) the terms according to af ~ a,
and using (27) we get

Snla) = Lo Tapea (27)" = 5, 2ol

~ 27ninfa(qocffc(a))‘

(29)

We conclude that we must “expect” T'(q) to equal inf,(qa —
fa(a)). For the special case of an MWM process, i.e., Y = D,
it can be shown (see [42]) that the dual relation holds. This
relation is called the multifractal formalism and reads

(@) =T"(a) := inf(ga = T(q))- (30)

Simple calculus shows that T*(a) = ga — T'(q) at a = T'(q)
provided T"(q) < 0. This relation via the Legendre transform
T* is typical of the theory of large deviations [43]. The goal
there is to establish relations such as (30) under most general
assumptions. To use the correct terminology, f is the rate func-
tion of a so-called large deviation principle (LDP): it measures
how frequently or how likely the observed aj ~deviates from the
“expected value” a.

In order to estimate T'(¢) from data, it is customary to use the
approximation 2-"7(?) ~ S, (q). For the MWM this is equivalent

to _
291

9—iT(2) Z |2_j/2Uj,k|q. (31)
k=0
Any linear fit of log S(;)(¢) against j will give the slope T'(q).
Let us calculate T'(¢q) for the MWM model, i.e., Y = D. Using
independence of the multipliers M i and denoting by ' the sum
over all k, =0,...,2" — 1 we find

E[S.(9)] = Y E(M{)"--E(M;,)? - E(Mg)"

EI:IE(M("))‘I .. -IE(M“))‘I -IE(M(?)‘?

— (M) 2" ﬁIE (M“))q . (32)

In the second step we made use of the fact that the multipliers
M; are identically distributed to M (1), To this we add the fact

that the moments of the M (%) converge to the ones of the limiting
random variable M for the next equation, and end by assuming
that M = (1 + A)/2 with A being S-distributed as in (19) to
obtain:

MWM: T(q) = -1-Ilog, E[MY] (33)
L(p+qg)T'(2p) .
= —1-log, ——=—-Lif g > —p,
BT ot 1777
and T(q) = —o0 if ¢ < —p.

The function T'(¢) is a simple statistical description of the pro-
cess that captures marginal information, but which also governs
the “burstiness” through the multifractal formalism. It must be
emphasized here that the multifractal parameters T'(q) of the
MWM process do not necessarily imply that the process can-
not be modeled parsimoniously. For example, in the case of the
MWM, the g-distributions for the multipliers are controlled by
the parameters p; (20). If one replaced the right side of (20) by
the powerlaw for fGn then all values T'(¢) would be determined
by H [29].

Now let us compute T'(gq) for the self-similar fBm. From (1)
we find

E 2_: |B((kn +1)2° ") — B(kn2"™)|?
k»n=0
=2"E[|B2 )] = 2" " E[B(1)|"] (34)

which yields for fBm

gH —1 for q > —1,

—00 for g < —1. (35)

B N@z{

This is probably the most compact way to express the
monofractal character of fBm: taking the Legendre transform
of T shows that fBm possesses only one degree of “burstiness”
(a(t) = H) which is omnipresent (compare also (3)).

6.5 Multifractal scaling of moments and LRD

The multifractal scaling exponent T'(2) of a process Y is closely
related to the LRD parameter H, since both measure the power-
law behavior of some second-order statistics. More precisely,
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T'(2) measures the scaling behavior of the second sample mo-
ments (28), while H (5) can be estimated from the scaling of the
sample variance.

For a process Y with zero-mean increments Z this can be made
precise. Let us denote resolutions by m = 27". We define
Z™) such that mZ(™ is the increment of Y at resolution m.
From Section 2.1 we find first that var(Z(™)~ m?#-2, Next,

(28) gives (28) gives 20MTR) ~ EY, L., |mZM? =
2722(-"E|Z(™)|? = const - 2 "var(Z(™)). Comparing the ex-
ponents of 27" we find T'(2) = 1 + (2H — 2), or,

T(2)+1

H =
2

for zero-mean processes. (36)

This is in agreement with the theoretical formulas (33) and
(35) for the spectra of MWM and fBm, respectively.

For multifractal measures such as the MWM a first difficulty
in establishing a relation between H and T'(2) arises from the
fact that these processes are not second-order stationary. So,
LRD cannot be defined as usual through the decay of the auto-
correlations. However, alternative fractal properties, such as the
decay of aggregate variances (Section 2.1) or wavelet coefficients
(Section 3.2), which are equivalent to LRD in the presence of
second-order stationarity, can still be defined and calculated,
leading to the same result (36).

7 Conclusions

The MWM provides a new multiscale tool for synthesis of non-
Gaussian LRD traffic. Computations involving the MWM are
extremely efficient — synthesis of a trace of N sample points
requires only O(N) computations. In fact, synthesis of a trace
of length 2'® data points takes just 8 seconds of workstation cpu
time. The parameters of the MWM, numbering approximately
log N, are identical in number to the WIG model and are sim-
ple enough to be either inferred from observed data or chosen
a priori. We can reduce the number of parameters further by
developing a parametric characterization of the wavelet energy
decay across scale.

With the MWM and WIG models, we have been able to fit
actual traffic traces, and have developed preliminary queueing
results that demonstrate the importance of the nonGaussian na-
ture (including scaling of higher-order moments) of traffic in de-
termining queueing performance.

Apart from being a useful tool for fast synthesis of realistic
data traffic, the MWM is a promising analysis tool for the net-
work researcher. Further research could make the MWM viable
for data prediction. The parameters of the MWM could also be
used to capture the effect of different protocols on shaping data
traffic (e.g., the TCP protocol). In short, the use of the MWM
in real-time network protocols and control algorithms seems very
promising.
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