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1. Introduction

This study is strongly motivated by the search of new models for teletraffic. In a sequel
of papers [28, 19, 22, 27, 9] it has been demonstrated that teletraffic has a very rich scaling
structure when the measured traffic traces are looked at the very finest resolutions, usually
resolutions 100 ms and smaller. More preciselyAét, s) denote the amount of traffic (bytes)
arriving on intervalt, s). Empirical studies of different network environments suggest that the
scaling law

log EA(t,t + 6,)? =~ ¢(q) log 6, + Cy

holds over a wide range of resolutiofis with a non-linear functior(q). In other words, the
large-deviation based multifractal spectrum seems to be non-trivial. As an illustrative example,
we consider a traffic sample measured in an international link of the Finnish University and
Research Network (Funet). An IP traffic trace and the corresponding empirical multiscaling
moment plots are shown in Figure 1. Also in this case, multifractal-type behavior is seen.
Currently, there is no complete physical understanding which and how network elements result
in this phenomenon. However, the most probable candidate is the joint dynamics of TCP

(Transmission Control Protocol) and queues acting in a extremely heterogeneous environment.
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FIGURE 1: A traffic trace from an international link of FUNET and the corresponding empirical

multiscaling moments with = 0.5, 1, ..., 5, starting from the bottom

There are many ways to construct random multifractal measures varying from the simple
binomial measures to measures generated by random branching processes (see e.g., [21, 26,
1, 5, 2, 25, 27]). In teletraffic modeling, we would like to have, in addition to a simple
and causalconstruction, als@tationarity, i.e., stationarity of the increments of the process

A(0,t). Unfortunately, most of the ‘classical’ multifractal models, in particular tree-based
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cascades, lack both of these properties. It should be noted that a multifractal process with
stationary increments is not a completely new idea. Jaffard [12, 13] showed that certain Lévy
processes are also multifractal. However, since Lévy processes have linear multifractal spectra
and real data traffic exhibits strictly concave spectra, [28, 19, 22, 27] they are unsuitable for
our modeling needs. Processes with stationary increments have also been used by Gupta
and Waymire [10] in the context of scaling and multiplicative structures, yet with different
approach and objectives.

Research on multiplicative cascades has been very active. Especially, Mandelbrot's martin-
gale [20, 21], a simple tree-based construction with independent random multipliers, has been
considered in a large number of publications; first by Kahane and Peyriére [18], and the story
still continues (see e.g. [11, 5, 30, 23, 2, 3, 24]). Extensions such as relaxing the independence
assumption of the multipliers or randomizing the number of offsprings have also been studied.
To give a short list without intention of being complete we refer to Molchan [23] and Waymire
and Williams [31, 32] regarding dependent multipliers, to Peyriére [26], Arbeiter [1], and Burd
and Waymire [4] regarding random number of offsprings.

We consider a natural and stationary generalization of the multiplicative cascade construc-
tion. This scheme, as well as the genuine cascades, belong to the framework of the positive
T-martingales and multiplicative chaos introduced by Kahane [16, 17, 14].(A@t) be
a sequence of positive independent random functions (i.e. processes) defined on a compact

metric spacd such thaeA (") () = 1 for all t € T and consider finite products

n

An(t) = [TAP ).

i=1

HereA,, is an indexed martingale, since it is a martingale for ¢aeli’. By [17], A,,(¢) dv(t)
converges weakly to a random measii@) dv(t) for any positive Radon measure Only
partial answers are known regarding the convergengg, ji < p < co. Special cases which
have been studied include, for example, Gaussian chaos, i.e., lognormal multisiierisy
Kahane [16], Lévy chaos by Fan [6], and random Gibbs measures by Fan and Shieh [8]. Note
that theT-martingale approach works also with random coverings (see e.g. [17, 14, 15, 7]).

In our setting, we restrict ourselves to the Lebesgue case and study convergence and related
questions of the limiting measure af, (¢) d¢, and in its simplest form our model is based on
the multiplication of independent rescaled stationary stochastic prock§ses dist A(b)

which are piecewise constant (héiéét denotes equivalence in distributions). It is instructive



4 Mannersalo, Norros and Riedi

to compare it to a Fourier decomposition where one represents or constructs a process by

superposition of oscillationsn(A;t).

In multiplying rather than adding rescaled versions of a ‘mother’ process we obtain a
process with novel properties which are best understood not in an additive analysis, but in
a multiplicative one. Processes emerging from multiplicative construction schemes can easily
be forced to have positive increments and exhibit typically a ‘spiky’ appearance. The so-called
multifractal analysis describes the local structure of a process in terms of seapingents

accounting for the multiplicative structure.

It is tempting to view the multiplicative construction as an additive one — which opens the
possibility to use linear theory — followed by an exponential. Such an approach, however, ob-
scures what happens in the limit. As with the cascades, an infinite product of random processes
will typically (almost surely at almost all times) be zero; equally, its logarithm tends to negative
infinity. A non-degenerate limiting behavior can be observed for the product, though, by taking
a distributional limit rather than pointwise limit. In simpler words, a multiphé? (¢) should
not be evaluated in points but should be seen as redistributing or re-partitioning the mass. In
the words of teletraffic modeling\(*) (¢) can be thought of as a local change in the arrival rate
where one is interested actually in the integrated ‘total load’ process. Consequently, we will

study

A0 = [ T]A9 ) as

=0

which converges to a well defined, non-degenerate and continuous process under suitable

conditions.

The paper is structured as follows: We start by studying the construction of multifractal
measures based on iterative multiplication of stochastic processed asbove, in particular
convergence and non-degeneracy. Then, we consider a special case where the multipliers are
independent rescaled versions of some mother process, looking at continuity, power laws of
moments as well as long-range dependence (LRD) of the limiting process. Finally, we pro-
vide an application-friendly family based on piecewise constant processes with exponentially

distributed sojourn times.
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2. Multifractal products of stochastic processes

In order to keep the presentation simple, we only consider 1-dimensional processes on the
closed unit interval’ = [0, 1]. Extensions to the real linR as well as to higher dimensions

are not too difficult.

2.1. Construction

We start fromI’-martingales defined by independent multiplication as in [17]. Consider a

family of independenpositiveprocesse$A () ()} ;<1 with
EAO@W) = 1 VteT,i=0,1,2....

Later, when studying particular properties of the process, we will usually assume th&btse
are stationary, but this is not necessary in the general case.
Define the finite product processes

n

An(t) = J]AD@).

=0

and the corresponding cumulative processes

t t n
An(t)i/o An(s)ds:/o [[A9(s)ds,  n=0,1,...
=0

Sometimes, it is easier to consider the corresponding positive measures defined on the Borel
sets5 of T":

un(B)i/An(s)ds, n=0,1,..., B eB.
B

2.2. Convergence

Theorem 1. [17] The random measureg,, converge weakly a.s. to a random measpre
Moreover, given a finite or countable family of Borel sg&tsonT’, we have with probability

one:

Vi pu(Bj) = lim pn,(B;).

n—oo

The a.s. convergence df, (¢) in countably many points at the same time can be extended
to all points inT if we know that the limit procesd is almost surely continuous. Conditions

for continuity in a more specific setup are given later in Proposition 4.
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Corollary 1. If A, — A weakly a.s., andi,, and A are continuous almost surely, then with

probability one:vt € T, A(t) = lim,, oo An(t).

Unfortunately, Theorem 1 does not say anything abouttheonvergence; as is noted in
[17], one of the following two cases is met: eithdy,(t) — A(t) in £, for each givent
or A, (1) converges t® almost surely. The cases are callesh-degeneratanddegenerate
respectively. In this paper, we present conditionsgerconvergence which is the easiest to

handle.

Proposition 1. Suppose that the stationary independent proces$eési = 0, 1, . . ., satisfy

EAD() = 1, VteT, 1)
VarAWD(t) = o%2<oo0, VteT, 2)
COV(A(i)(tl), A(Z)(tg)) = O'2pi (tl — tg) ,Vth to € T7 (3)

wherep;,i =0, 1, ..., are the normalized covariance functions witlj0) = 1. Then(A4,,(1) :

n € N) is bounded inZ, if and only if
Z an(1l) < oo, 4)
n=0

wherea,, (t) = fot(t — 8)pn(s) [12) (1 + 0pi(s)) ds. Furthermore, if condition (4) holds
true thenA,,(t) — A(¢) in L forall ¢ € [0, 1].

Note: Similarly as in Theorem 1, we could prove the simultaneous convergence for points
in a countable set. In order to havk convergence for all points ifi’ at the same time,
however, we need extra conditions, like the continuity4fvhich we will address in the

following section.
Proof. By Fubini, {A, (1)} is a martingale with respect {d¢F,,, P)}, where
Fp=0c(AO AW AM),

SinceA, (1) € L, for any fixedn, it is enough to check §- E [(Ax (1) — Ax—1(1))?] < oo.



Multifractal product of stochastic processes 7
By the definition ofA,, and assumptions (1)—(3)

E [(An(1) = An-a(1))?]
- E/o /O (A(n)(81) - 1) (A(7l)(32) - 1) Ap_1(s1) Ap_1(52) dsy dso

11
/ / Cov A(”)(sl)7A(")(52) B (Ap_1(51)An_1(52)) dsy dss
= / / a2 pn |51752|)H(1+02pi(|51752|)d51d52
= 20/ (1= 8)pn(s Hl—i—apl
0

Thus(A, (1) : n > 0) is bounded inZ, if and only if

> 1 n—1
Z/o (1 —z)pn(z) H(l +0?pi(z)) dz < oco.
n=0 i=0

SinceA is a positive, nondecreasing process, the above condition is sufficieaf, foy being
bounded inC, for all ¢ € [0, 1]. O

Explicit knowledge of the decay rates of the covariance functions simplifie&tvendition

considerably. The following result covers a fair range of correlation functions:

Corollary 2. If there are positive constants +, b andC such that
exp(—vb's]) < pi(s) < |Cb's| 77, (5)
forall s € [0, 1], then(A,,(¢) : n > 0) is bounded inC if and only if

b>1+c% (6)

The particular form of (5) is motivated by the processes we study in Section 3. Notice that the

conditionb > 1 + o2 is the same as for Mandelbrot’s martingale, as is shown in [18].

Proof. Sufficiency: Becausg;(s) > 0 (i.e., A®) are positively correlated),

n—1

an® < [ pulo) [LO+ 20000 as.

=0
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Without losing generality, we can set= 1 and assume th&t = 1, v € (0,1) and1 + o2 <
b < (1+ 02)Y/1=7, First, we split the integration into parts and use the facth@t) < 1 for

all s. Letp;(s) = min{1, |b’s| =7} and take an arbitrarny, < n, then

1 n—1
@)= [ puls) [0+ () s
0 i=0
p—n+m n—1 p—ntit+l n—1

[ asarase Saveyes [ g I asetp s

0 p—nti

IN

i=m Jj=n+m-—1i

n—m—1 p—ntmtitl

< (140" {b"+m+ > /
=0 mrAmti

n—m—1 b7n+7n+17+1 27 —m i
1 b—m
= (1 + 0'2)” {b—n+m + E /b, b—n’ys—’y |:J;-O_-'_o’2:| ds}
=0

n+m-+1i

pl=v _ 1)p(l—nm ol 14 g2p—mv]?
= A+ {bm+( ) > {b”“' } :

1—=7v i=0 1+0?

i [L2 )

1+ 02

where the second inequality holds becapige) is decreasing with respect to bothand.

Next, letm = min{k € N : 5!~ 71H20% <1} Then
an(1) < COb,mb " (1+ 0",

whereC'(b, m) < oo does not depend am Thus)_ a,, (1) < oo.

Necessity: Leb, t > § > 0, be arbitrary. Then

t—6
an(t) > 5/0 e VTS (1 4 o2e ) ds

_ (1 +02)5 - (1 +0267ub"(t76))n+1 (1 Jrgz)n
v 1+ o2yt (n+ 1)p"
(14 02)5 (1+02)"

- 2u (n+ 1)’

if n is large enough. Thuy’ a,,(¢) diverges ifb < 1 + o2. O

3. Self-similar Products

3.1. Invariance and Convergence

The analysis of the limiting proces$(t) simplifies greatly provided that the multipliers

A® are connected through a rescaling property. More precisely, throughout this section we
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assume that the processk$) are independent rescaled copies of some stationary mother
processh, i.e.,
A () EAR), (7)

whereb > 1 andEA = 1. Two results follow straight from this rescaling property:

Corollary 3. Assume self-similar multipliers in the sense of (7) with a mother protedsch

lies in Lo and such that its scaled covariance function satisfies
exp(—v|z|) < p(z) < [Cz[™?

for some positive numbersand~. Then,A,,(t) converges inC, if and only ifb > 1 + o2,

wheres? = Var A.

Proposition 2. Assume (7) and that,, (¢) converges irC;. Then, the limit procesd satisfies

therecursion .
A(t) = 7/0 A(s) dA(bs), (8)

where
(i) the processed and A are independent, and
(i) the processes! and A are equally distributed.

To relate to the classical cascades, let us note that ‘Mandelbrot’s martingale’ [18] can
formally be written exactly as (7) with the only difference th&athas to be chosen non-
stationary — it is constant over the intervalks/'v, (k + 1)/b) (k integer) — and the values
A(k/b) form a sequence of i.i.d. random variables of méam this case, (8) may be reduced
to

A(L/5) = T AO) A1), ©)

where the random variables(0) and.A(1) are independent, and(1) is equally distributed
asA(1).

Generalizing (9) taA(k/b) — A((k — 1)/b) = (1/b)A((k — 1)/b)(A(k) — A(k — 1))
and summing ovek = 1,...,b yields the invarianceor recursion [18, equation 3], from

which Kahane and Peyriere derive all their results. Their theorem 1 establishes four equivalent

LFor cascades, the random variahlég:) — A(k — 1) are independent.
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conditions for non-degeneracy of the limiting measure. The counterpart to the equivalence
of conditions ), (6) and ) of their theorem 1 is easy to establish using similar arguments
as theirs (see Proposition 3 below). The main result of their theorem 1, however, the non-
degeneracy conditio) in terms of the moments af, remains an open problem in our case.

At the moment, we can only state a sufficient and necessary conditiof,foonvergence,

given in Corollary 3, which is sufficient for non-degeneracy.

Proposition 3. Assuming (7), the following are equivalent:
(o) the a.s. martingale limit(1) satisfiesEA(1) = 1;
(B) the a.s. martingale limitd (1) satisfiesEA(1) > 0;

(v) the equation (8) has a solutiof such thatt A(1) = 1.

Proof. Assume §). ThenA can again be written as
~ 1 t =
A = / A(s) dA(bs),
0

whereA is independent from, etc. DenoteA(Y) = A, A(Y) = A and so on. Then
E(AL)[AQ, .. AM) = / [TAD@'s) ds.
0 i—o

This martingale is uniformly integrable — but it is the same (in distribution at least),é5)!

Thus,a holds. The remaining implications = (3 = - are obvious. g

3.2. Continuity

The following proposition gives sufficient conditions for the continuity of the limit process.
Note that, in the random cascade case [18], the hon-degeneracy is equivalent with the condition
EAlog A < logb.

Proposition 4. If, in addition to (7), there exists a non-trivial integrable limit= lim,, ., A,
EAlog A < logb, andEA(1)log A(1) < oo, thenA is continuous.

Proof. Denote byB the pure jump part ofi:

B(t) =) AA(s).

s<t



Multifractal product of stochastic processes 11

By Proposition 3, (8) holds. Since no “new” jumps can be created in the integration, (8) holds

for B as well. Denotg(z) = xlog z. Now,

E) g(AB(s)) EZg( s)AB( bs))

; bE;g( (s/b)AB(s ))

= bE;[ (s/b)AB(s)(log A(s/b) + log ABb(S))}

= E) A(s/b)AB(s )log +EZ (s/b)log A(s/b))AB(s)
= Egg AB(s)) — log(b)EB(1) +EZ/<\110gA)EB(1),

where the second equality uses the fact tBdtas stationary increments. Singés superad-
ditive,
EY g(AB(s)) < Eg(B(1)) < Eg(A(1)) < oo.

s<1

It follows thatlog(b)EB(1) = E(Alog A)EB(1). UsingEB(1) < EA(1) < coandEAlog A <
log b, we findEB(1) = 0 andB = 0 a.s. O

3.3. Scaling of moments

Next we consider general moments. Assuming that the possible jumpseiiave nicely
enough, we can show th&tA(t)? ~ t9'°8 A" As straightforward corollaries, this gives

almost the sampecessarygonditions for non-degeneracy and boundednegy,ias [18].

Proposition 5. Assume (8) and that is non-degenerate. Let> 0 be such thatd(1) € £,

and assume that

i c(g,b™") < o0 (10)
n=0

wherec(q,t) = Esup,c(o, |A(0)? — A(s)?|. Then there exist constartsand C such that

CtaTlom BN < BA(1)T < Cron BA vt e [0,1), (11)

To motivate (11) we recall the simple form (9) of the invariance4df) in the case of a

cascade which implies th&dr cascades

EA(1/6")7 = (b"7EA?)" EA(1)4 (12)
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This simple law is a direct consequence of the fact that the multiphé?sof a cascadeA

are constant over intervals of lengtiib’. Proposition 5 claims that if the-th power of the
multipliers A do not oscillate too much over these intervals (see (10)) then roughly the same
scaling law (11) holds.

Proof. Let us first establish (11) for the discrete poityts= =", n = 0,1, 2,.... To this
end, set

EA(0)7
ba

Rn(q) = E[AQ®™)] - EIAb™")1].

For cascadesR,, is zero. Here, we show that it is not too large provided (10) holds. Using

equation (8) and equal distribution dfand A, we find
bi” ~
( / AGs) dA(bs))
0

Next, we use that for positive we have

( / ()~ 0| < suplat(ry 1.

sel

q
R.(¢g) = b 9E

— A(O)QA(b—”H)q] .

SinceA(b—t1) = [0 we find

| B (q)]

IN

s€[0,b—"]

bs),
( sup s)1A(b ”H)q—A(O)qA(b_nH)ﬂ)
EAL™™YIE sup |A(s)? — A(0)Y

s€[0,b— "]

= bIE[AD ") e(q,b7™).

Letn* = min{n : ¢(q,b") < EA?} and assume that > n*. Setv,, = EA(b—")? for

short. Applying the definition ofz,, recursively we find

wale) = vn*@ﬁ(muw)

e \ b7 vi(q)
EA\" " ot bR +1(q)
= @ () 11 (1 e )

The product term is the ‘correction’ needed because/AHé are not constant over-ary

intervals. The product term is finite since

i log <1 - C(‘}{J’iqi)) < Til log (1 o Rl“ > Z 1og< Eiqi)) .

1=n* 1=n* 1=n*
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and (10) implies
1 ) 1 cle.b™)
—00 < Z og EA‘I Z og EA‘I < 0.

Noticing thatb—"¢(EA4)" = (b—")alogs BA? — 447108 BA ghoyys that there exist positive

constantg”; andC5, such that for alk
Clt%_k)gb EAY < EA(tn)q < CQtzT]L—logb EAq.

Finally, the bounds have to be extended fortadl [0, 1]. SinceA?(-) is a non-decreasing

process, it is an easy exercise to show that a correction factor large endéghds®". Thus

C = Olb7q+logb EA?
O = Cqu—logb EA?
are suitable constants for inequality (11). O

Corollary 4. If A is non-degenerate andl as in Proposition 5, theitA log, A < 1.

Proof. DenoteN = [b"] andp(q) = 1 — g + log, EA?. By sub-additivity of the function
27, q € [0,1], A(1)7 < XN, w12, where1™ = [ib=", (i + 1)b~"),i = 0,...,N

Applying stationarity of the increments and Proposition 5 gives
EA(1)? < C Ny (—atlog, EAT)  Fyn(1—q+log, EAT) _ & pne(q)

for all n. This means thap(q) > 0 for all ¢ € [0,1]. Sincep(l) = 0, it follows that
¢ (17) <0,i.e.,EAlog, A < 1. O

Corollary 5. If A is non-degenerated(1) € Ly, ¢ > 1, and A as in Proposition 5, then
EA? < pe-1,

Proof. Denote N = [b"]|. By super-additivity of the function?, ¢ > 1, A(1)? >
ZZ 1;L(I(")) ,whereIi(”) =[ib™, (i +1)b""),i = 0,...,N. Applying stationarity of

the increments and Proposition 5 gives
EA(1)Y > C Ny (—atlog, EAY) > C p(1—g+log, EAY)

for all n. Thusl — ¢ + log, EA? < 0. O
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We conjecture thaEA? < b9-1, together with some extra condition on the dependence
structure ofA, is sufficient to guarantee that(1) converges inC, This is indeed true for
g = 2. If the conjecture holds, then we may conclude tfatlog, A < 1, together with the
existence of a finitg/th moment for some; > 1, is sufficientto guarantee thatl be non-
degenerate. Indeed, settipfy) = 1 — g + log, EAY as beforey’(14) < 0 impliesp(q) < 0
for someg > 1, thus the convergence df,, in £, andEA(¢) = lim,, EA, (¢) =

In applications related to multifractals, we are usually interested in scaling properties. The
deterministic partition functiotis defined as

N-1

E s
= lim inf log Zk Ou( ) —hmlnf——log2 Zu
k=0

n—oo log |I(n | n—oo

T(q)

whereI(”) k27", (k+1)27"),k =0,...,2" —1. This may be the easiest scaling function
to compute. A study of the pathwise scaling properties as well as the multifractal spectra is

under way.
Corollary 6. If A is non-degenerated(1) € L,, ¢ > 1, and A as in Proposition 5, then
T(q) =q—1—log, EAY.

Proof. By Proposition 5,

1
lim —log, EA(27") = —q + log, EAY.

n—oo N

SinceA has stationary increments,

T(¢) = liminf—— log2 E Z (")

n—oo
k=0
1 _
= —lim —log, 2"EA(27™)?
n
= ¢—1—log, EAZ
U
If the original mother process is positively correlated we can show that the multiplicative
construction increases variance. This implies that our construction predaermgsRange

DependencéLRD, see e.g. [29]). We say that a square integrable praBes#h stationary

increments is long range dependent if, for sope 1, Var B(t) > c¢t” for all ¢.

Proposition 6. Assume, in addition to (7), that is non-degenerated(1) € L, and A is

positively correlated. TheWar A; > Var fo s)ds.
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Proof. SinceA and A are independent, a simple manipulation and rearrangement gives
1 t t ~ 5
Var A(t) = E<b2/ / A(Sl)A(SQ)dA(bSl)dA(bSQ))t2
0 JO
1 t pt ~ .
_ E<b2/ /(A(sl)A(SQ)—1)dA(b51)dA(b52)>
0 JO
t t
—/ / E(A(Sl)A(SQ) — 1) dSl d82
0 JO
1 [t ot B
+E —/ / dA(bs;) dA(bsy) | — t2
b? 0 Jo
t t
+/ / E(A(Sl)A(SQ) — 1) d81 d82
0 JO
o2 [t ot _ ~ 1
_ 172/0 /O p(sl,SQ)COV(dA(bsl),dA(bsz))—i—b—QVarA(bt)

+Var ( t A(s) ds) .

0
The claim is proved if we can show that both terms in the second last line are non-negative.
Trivially, Var A(bt) > 0. Since both\ andA are positively correlate@ov(dA(sy),dA(sz2)) >

0 andp(s1,s2) > 0. (It is straightforward to replace the somewhat heuristic infinitesimal

covariance by a limit of finite increments). O

Corollary 7. If fot A(s) ds is long range dependent thet(t) is also.

4. Examples

In order to introduce an application friendly process family, i.e., parsimonious, causal, and
easy to generate and analyze, we consider Markov jump processes which satisfy the following

assumptions.

() AD() “A@®i), i=0,1,..., whereb > 1 andA is a positive, stationary, positively

correlated, piecewise constant Markov process.
(i) The transition rates are bounded both above and below:
P (A(t) constant orit, t + A) | A(t) = x) = exp(—v(z)A),
wherevnin < v(x) < vmax for all z in the state space df.

(i) A = lim,_ A, is non-degenerate.
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If we assume further that the variance/ofs finite and that its covariance decays exponen-
tially fast?, thenb > 1 + o2 is a sufficient condition for non-degeneracy sf(by Corollary
2).

Proposition 7. In addition to (i)—(iii), assumed € £, and

E Y AT)<Ct, (13)

T;€[0,t]

whereT; are the (random) jump points @f. Then the conclusion of Proposition 5 holds, i.e.,
EA(t)4 ~ 9~ 10gBAT,

Proof. By assumption (ii),
E (1{at least one jump o, ¢]} A%(0) | A(0)) < (1 — e m=")EA? < Ct.

On the other hand,

E sup [A(0)! —A(s)?| < E [ 1{atleastonejump o, ¢]}A?(0) + > A(T.
s€[0,t] T;€[0,t]
Thuse(q, b") < Cb=" if (13) holds. 0

Condition (13) is satisfied, for example, wharis bounded or\(7;)’s are independent of
T;. Then

E Y AT <EE| Y AT)[{T;} | < CE(#jumpsin(0,t]) < Ct,

T;€[0,t] T;€[0,t]

where the last inequality follows from assumption 2.

Example 1. Consider a stationary two-state Markov procass) with transition rateg, and
vo on the state spacg& = {S1,52}. In order to haveéE(A(t)) = 1, the transition rates must

satisfy the equation
1/251 V1SQ
V] + Uy V1 + V2

=1.

The covariance is given by
COV(A(t),A(s)) — 0-26—(V1+V2)|s—t|’

2This is always true if the state space is finite.
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where

S? S3
02:7V21+V12—1.
V1 + 1o

Constructing a family{ A()} from the mother process by changing time
AD)EA@, i=0,1,....

means that the processe¥), i = 0, 1, .. ., are independent two-state Markov processes with
transition rate$’v; andb’v,. A realization of this construction is seen in figure 2.
Although the values of the mother processire dependent on the arrival process, we may

still apply Proposition 7 since the state spacé\d$ bounded. We conclude that

4q q
T(q) =q—1—log, EA? = ¢ — 1 —log, (M)

V1 + V2

Example 2. Let the mother processbe a piecewise constant process littp(») distributed
i.i.d. lengths of constant periods. For each interval we draw independently a randond¥alue
from a common distribution satisfying(1/) = 1. Thus, the proces&(™ (t) is a piecewise

constant process whose covariance is given by
Cov(AM™(0)A™ (z)) = Var (M)e "1l = 52p,, (2).

A realization is shown in figure 3. Notice that this process is a generalization of Mandelbrot's
martingale analyzed in [18]. Instead of having a deterministic division of the interval, we split
according to a Poisson process.

Since the values of the mother procesare independent on the arrival process we may

apply Proposition 7 and conclude that
T(qg) =q—1—log, EA9=¢q—1—log, EM1.

Formally, this is the same formula as the one for the Martingale of Mandelbrot.

Even though these two examples seem to be quite similar, there are some differences which
can also be observed visually. The first process has some sort of periodic structure due to the
fact that after drawing the initial state of a multiplier the only randomness is in the lengths
of the constant periods. The second process is clearly burstier. The obvious reason is the

unboundedness of the multipliers.
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0. 005
0. 004
0.2 0.003

0. 002

0.001

FIGURE 2: Example 1. On the left, a realization of procesgt) with vy = 2, v, = 1/2, 51 = 1/3,

S2 = 7/6 andb = 4. On the right, the corresponding incremental process at resolution 0.001.

1.2
0.02
1
0.8 0.015
0.6
0.01
0.4
0.005
0.2
0.2 0.4 0.6 0.8 1 B 0.2 0.4 0.6 0.8 1

FIGURE 3: Example 2. On the left, a realization of proce$s(t) with v = 1, b = 4, andM ~

Gamma(3, 1). On the right, the corresponding incremental process at resolution 0.001.

5. Concluding remarks

The mathematical analysis of multifractal products of stochastic processes is far from com-
plete. The aim of this paper was to give some basic definitions and properties in the general
case, and show how this construction can be applied in the case of rescaled mother processes.
The results given in this paper concern global behavior. A pathwise study of multifractal
scaling properties involves a more delicate analysis of the almost sure local structure and is the

object of current research.
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