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1. Introduction

This study is strongly motivated by the search of new models for teletraffic. In a sequel

of papers [28, 19, 22, 27, 9] it has been demonstrated that teletraffic has a very rich scaling

structure when the measured traffic traces are looked at the very finest resolutions, usually

resolutions 100 ms and smaller. More precisely, letA(t, s) denote the amount of traffic (bytes)

arriving on interval[t, s). Empirical studies of different network environments suggest that the

scaling law

log EA(t, t + δn)q ≈ c(q) log δn + Cq

holds over a wide range of resolutionsδn with a non-linear functionc(q). In other words, the

large-deviation based multifractal spectrum seems to be non-trivial. As an illustrative example,

we consider a traffic sample measured in an international link of the Finnish University and

Research Network (Funet). An IP traffic trace and the corresponding empirical multiscaling

moment plots are shown in Figure 1. Also in this case, multifractal-type behavior is seen.

Currently, there is no complete physical understanding which and how network elements result

in this phenomenon. However, the most probable candidate is the joint dynamics of TCP

(Transmission Control Protocol) and queues acting in a extremely heterogeneous environment.
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FIGURE 1: A traffic trace from an international link of FUNET and the corresponding empirical

multiscaling moments withq = 0.5, 1, . . . , 5, starting from the bottom

There are many ways to construct random multifractal measures varying from the simple

binomial measures to measures generated by random branching processes (see e.g., [21, 26,

1, 5, 2, 25, 27]). In teletraffic modeling, we would like to have, in addition to a simple

andcausalconstruction, alsostationarity, i.e., stationarity of the increments of the process

A(0, t). Unfortunately, most of the ‘classical’ multifractal models, in particular tree-based
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cascades, lack both of these properties. It should be noted that a multifractal process with

stationary increments is not a completely new idea. Jaffard [12, 13] showed that certain Lévy

processes are also multifractal. However, since Lévy processes have linear multifractal spectra

and real data traffic exhibits strictly concave spectra, [28, 19, 22, 27] they are unsuitable for

our modeling needs. Processes with stationary increments have also been used by Gupta

and Waymire [10] in the context of scaling and multiplicative structures, yet with different

approach and objectives.

Research on multiplicative cascades has been very active. Especially, Mandelbrot’s martin-

gale [20, 21], a simple tree-based construction with independent random multipliers, has been

considered in a large number of publications; first by Kahane and Peyriére [18], and the story

still continues (see e.g. [11, 5, 30, 23, 2, 3, 24]). Extensions such as relaxing the independence

assumption of the multipliers or randomizing the number of offsprings have also been studied.

To give a short list without intention of being complete we refer to Molchan [23] and Waymire

and Williams [31, 32] regarding dependent multipliers, to Peyriére [26], Arbeiter [1], and Burd

and Waymire [4] regarding random number of offsprings.

We consider a natural and stationary generalization of the multiplicative cascade construc-

tion. This scheme, as well as the genuine cascades, belong to the framework of the positive

T -martingales and multiplicative chaos introduced by Kahane [16, 17, 14]. Let(Λ(i)) be

a sequence of positive independent random functions (i.e. processes) defined on a compact

metric spaceT such thatEΛ(i)(t) = 1 for all t ∈ T and consider finite products

Λn(t) =
n∏

i=1

Λ(i)(t).

HereΛn is an indexed martingale, since it is a martingale for eacht ∈ T . By [17], Λn(t) dν(t)

converges weakly to a random measureΛ(t) dν(t) for any positive Radon measureν. Only

partial answers are known regarding the convergence inLp, 1 ≤ p < ∞. Special cases which

have been studied include, for example, Gaussian chaos, i.e., lognormal multipliersΛ(i), by

Kahane [16], Lévy chaos by Fan [6], and random Gibbs measures by Fan and Shieh [8]. Note

that theT -martingale approach works also with random coverings (see e.g. [17, 14, 15, 7]).

In our setting, we restrict ourselves to the Lebesgue case and study convergence and related

questions of the limiting measure ofΛn(t) dt, and in its simplest form our model is based on

the multiplication of independent rescaled stationary stochastic processesΛ(i)(·) dist= Λ(bi·)

which are piecewise constant (here
dist= denotes equivalence in distributions). It is instructive
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to compare it to a Fourier decomposition where one represents or constructs a process by

superposition of oscillationssin(λit).

In multiplying rather than adding rescaled versions of a ‘mother’ process we obtain a

process with novel properties which are best understood not in an additive analysis, but in

a multiplicative one. Processes emerging from multiplicative construction schemes can easily

be forced to have positive increments and exhibit typically a ‘spiky’ appearance. The so-called

multifractal analysis describes the local structure of a process in terms of scalingexponents,

accounting for the multiplicative structure.

It is tempting to view the multiplicative construction as an additive one — which opens the

possibility to use linear theory — followed by an exponential. Such an approach, however, ob-

scures what happens in the limit. As with the cascades, an infinite product of random processes

will typically (almost surely at almost all times) be zero; equally, its logarithm tends to negative

infinity. A non-degenerate limiting behavior can be observed for the product, though, by taking

a distributional limit rather than pointwise limit. In simpler words, a multiplierΛ(i)(t) should

not be evaluated in points but should be seen as redistributing or re-partitioning the mass. In

the words of teletraffic modeling,Λ(i)(t) can be thought of as a local change in the arrival rate

where one is interested actually in the integrated ‘total load’ process. Consequently, we will

study

An(t) =
∫ t

0

n∏
i=0

Λ(i) (s) ds,

which converges to a well defined, non-degenerate and continuous process under suitable

conditions.

The paper is structured as follows: We start by studying the construction of multifractal

measures based on iterative multiplication of stochastic processes as inAn above, in particular

convergence and non-degeneracy. Then, we consider a special case where the multipliers are

independent rescaled versions of some mother process, looking at continuity, power laws of

moments as well as long-range dependence (LRD) of the limiting process. Finally, we pro-

vide an application-friendly family based on piecewise constant processes with exponentially

distributed sojourn times.
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2. Multifractal products of stochastic processes

In order to keep the presentation simple, we only consider 1-dimensional processes on the

closed unit intervalT = [0, 1]. Extensions to the real lineR as well as to higher dimensions

are not too difficult.

2.1. Construction

We start fromT -martingales defined by independent multiplication as in [17]. Consider a

family of independentpositiveprocesses{Λ(i)(t)}t∈T with

EΛ(i)(t) = 1 ∀t ∈ T, i = 0, 1, 2 . . . .

Later, when studying particular properties of the process, we will usually assume that theΛ(i)’s

are stationary, but this is not necessary in the general case.

Define the finite product processes

Λn(t) .=
n∏

i=0

Λ(i)(t).

and the corresponding cumulative processes

An(t) .=
∫ t

0

Λn(s) ds =
∫ t

0

n∏
i=0

Λ(i) (s) ds, n = 0, 1, . . .

Sometimes, it is easier to consider the corresponding positive measures defined on the Borel

setsB of T :

µn(B) .=
∫

B

Λn(s) ds, n = 0, 1, . . . , B ∈ B.

2.2. Convergence

Theorem 1. [17] The random measuresµn converge weakly a.s. to a random measureµ.

Moreover, given a finite or countable family of Borel setsBj on T , we have with probability

one:

∀j µ(Bj) = lim
n→∞

µn(Bj).

The a.s. convergence ofAn(t) in countably many points at the same time can be extended

to all points inT if we know that the limit processA is almost surely continuous. Conditions

for continuity in a more specific setup are given later in Proposition 4.
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Corollary 1. If An → A weakly a.s., andAn andA are continuous almost surely, then with

probability one:∀t ∈ T, A(t) = limn→∞ An(t).

Unfortunately, Theorem 1 does not say anything about theL1-convergence; as is noted in

[17], one of the following two cases is met: eitherAn(t) → A(t) in L1 for each givent

or An(1) converges to0 almost surely. The cases are callednon-degenerateanddegenerate,

respectively. In this paper, we present conditions forL2-convergence which is the easiest to

handle.

Proposition 1. Suppose that the stationary independent processesΛ(i), i = 0, 1, . . ., satisfy

EΛ(i)(t) = 1, ∀t ∈ T, (1)

VarΛ(i)(t) = σ2 < ∞, ∀t ∈ T, (2)

Cov(Λ(i)(t1),Λ(i)(t2)) = σ2ρi (t1 − t2) ,∀t1, t2 ∈ T, (3)

whereρi, i = 0, 1, . . ., are the normalized covariance functions withρi(0) = 1. Then(An(1) :

n ∈ N) is bounded inL2 if and only if

∞∑
n=0

an(1) < ∞, (4)

wherean(t) =
∫ t

0
(t − s)ρn(s)

∏n−1
i=0 (1 + σ2ρi(s)) ds. Furthermore, if condition (4) holds

true thenAn(t) → A(t) in L2 for all t ∈ [0, 1].

Note: Similarly as in Theorem 1, we could prove the simultaneous convergence for points

in a countable set. In order to haveL2 convergence for all points inT at the same time,

however, we need extra conditions, like the continuity ofA which we will address in the

following section.

Proof. By Fubini,{An(1)} is a martingale with respect to{(Fn, P )}, where

Fn = σ(Λ(0),Λ(1), . . . ,Λ(n)).

SinceAn(1) ∈ L2 for any fixedn, it is enough to check if
∑

E
[
(Ak(1)−Ak−1(1))2

]
< ∞.



Multifractal product of stochastic processes 7

By the definition ofAn and assumptions (1)–(3)

E
[
(An(1)−An−1(1))2

]
= E

∫ 1

0

∫ 1

0

(
Λ(n)(s1)− 1

)(
Λ(n)(s2)− 1

)
Λn−1(s1) Λn−1(s2) ds1 ds2

=
∫ 1

0

∫ 1

0

Cov
(
Λ(n)(s1),Λ(n)(s2

)
E (Λn−1(s1)Λn−1(s2)) ds1 ds2

=
∫ 1

0

∫ 1

0

σ2ρn(|s1 − s2|)
n−1∏
i=0

(1 + σ2ρi(|s1 − s2|) ds1 ds2

= 2σ2

∫ 1

0

(1− s)ρn(s)
n−1∏
i=0

(1 + σ2ρi(s)) ds.

Thus(An(1) : n ≥ 0) is bounded inL2 if and only if

∞∑
n=0

∫ 1

0

(1− x)ρn(x)
n−1∏
i=0

(1 + σ2ρi(x)) dx < ∞.

SinceA is a positive, nondecreasing process, the above condition is sufficient forAn(t) being

bounded inL2 for all t ∈ [0, 1]. �

Explicit knowledge of the decay rates of the covariance functions simplifies theL2-condition

considerably. The following result covers a fair range of correlation functions:

Corollary 2. If there are positive constantsν, γ, b andC such that

exp(−ν|bis|) ≤ ρi(s) ≤ |Cbis|−γ , (5)

for all s ∈ [0, 1], then(An(t) : n ≥ 0) is bounded inL2 if and only if

b > 1 + σ2. (6)

The particular form of (5) is motivated by the processes we study in Section 3. Notice that the

conditionb > 1 + σ2 is the same as for Mandelbrot’s martingale, as is shown in [18].

Proof. Sufficiency: Becauseρi(s) > 0 (i.e.,Λ(i) are positively correlated),

an(t) ≤
∫ t

0

ρn(s)
n−1∏
i=0

(1 + σ2ρi(s)) ds.
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Without losing generality, we can sett = 1 and assume thatC = 1, γ ∈ (0, 1) and1 + σ2 <

b < (1 + σ2)1/1−γ . First, we split the integration into parts and use the fact thatρi(s) ≤ 1 for

all s. Let ρi(s) = min{1, |bis|−γ} and take an arbitrarym < n, then

an(1) =
∫ 1

0

ρn(s)
n−1∏
i=0

(1 + σ2ρi(s)) ds

≤
∫ b−n+m

0

(1 + σ2)n ds +
n−1∑
i=m

(1 + σ2)n+m−i

∫ b−n+i+1

b−n+i

ρn(s)
n−1∏

j=n+m−i

(1 + σ2ρj(s)) ds

≤ (1 + σ2)n

{
b−n+m +

n−m−1∑
i=0

∫ b−n+m+i+1

b−n+m+i

ρn(s)
[
1 + σ2ρn−i(b−n+m+i)

1 + σ2

]i

ds

}

= (1 + σ2)n

{
b−n+m +

n−m−1∑
i=0

∫ b−n+m+i+1

b−n+m+i

b−nγs−γ

[
1 + σ2b−mγ

1 + σ2

]i

ds

}

= (1 + σ2)nb−n

{
bm +

(b1−γ − 1)b(1−γ)m

1− γ

n−m−1∑
i=0

[
b1−γ 1 + σ2b−mγ

1 + σ2

]i
}

,

where the second inequality holds becauseρi(s) is decreasing with respect to boths and i.

Next, letm = min{k ∈ N : b1−γ 1+b−kγσ2

1+σ2 < 1}. Then

an(1) ≤ C(b, m)b−n(1 + σ2)n,

whereC(b, m) < ∞ does not depend onn. Thus
∑

an(1) < ∞.

Necessity: Letδ, t > δ > 0, be arbitrary. Then

an(t) ≥ δ

∫ t−δ

0

e−bnνs(1 + σ2e−νbns)n ds

=
(1 + σ2)δ

ν

(
1− (1 + σ2e−νbn(t−δ))n+1

(1 + σ2)n+1

)
(1 + σ2)n

(n + 1)bn

≥ (1 + σ2)δ
2ν

(1 + σ2)n

(n + 1)bn
,

if n is large enough. Thus
∑

ãn(t) diverges ifb ≤ 1 + σ2. �

3. Self-similar Products

3.1. Invariance and Convergence

The analysis of the limiting processA(t) simplifies greatly provided that the multipliers

Λ(i) are connected through a rescaling property. More precisely, throughout this section we
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assume that the processesΛ(i) are independent rescaled copies of some stationary mother

processΛ, i.e.,

Λ(i)(·) dist= Λ(bi·), (7)

whereb > 1 andEΛ = 1. Two results follow straight from this rescaling property:

Corollary 3. Assume self-similar multipliers in the sense of (7) with a mother processΛ which

lies inL2 and such that its scaled covariance function satisfies

exp(−ν|x|) ≤ ρ(x) ≤ |Cx|−γ

for some positive numbersν andγ. Then,An(t) converges inL2 if and only ifb > 1 + σ2,

whereσ2 = VarΛ.

Proposition 2. Assume (7) and thatAn(t) converges inL1. Then, the limit processA satisfies

therecursion

A(t) =
1
b

∫ t

0

Λ(s) dÃ(bs), (8)

where

(i) the processesΛ andÃ are independent, and

(ii) the processesA andÃ are equally distributed.

To relate to the classical cascades, let us note that ‘Mandelbrot’s martingale’ [18] can

formally be written exactly as (7) with the only difference thatΛ has to be chosen non-

stationary — it is constant over the intervals[k/b, (k + 1)/b) (k integer) — and the values

Λ(k/b) form a sequence of i.i.d. random variables of mean1. In this case, (8) may be reduced

to

A(1/b) =
1
b
Λ(0)Ã(1), (9)

where the random variablesΛ(0) andÃ(1) are independent, and̃A(1) is equally distributed

asA(1).

Generalizing (9) toA(k/b) − A((k − 1)/b) = (1/b)Λ((k − 1)/b)(Ã(k) − Ã(k − 1))

and summing overk = 1, . . . , b yields the invariance1 or recursion [18, equation 3], from

which Kahane and Peyriere derive all their results. Their theorem 1 establishes four equivalent

1For cascades, the random variablesÃ(k)− Ã(k − 1) are independent.



10 Mannersalo, Norros and Riedi

conditions for non-degeneracy of the limiting measure. The counterpart to the equivalence

of conditions (α), (β) and (γ) of their theorem 1 is easy to establish using similar arguments

as theirs (see Proposition 3 below). The main result of their theorem 1, however, the non-

degeneracy condition (δ) in terms of the moments ofΛ, remains an open problem in our case.

At the moment, we can only state a sufficient and necessary condition forL2 convergence,

given in Corollary 3, which is sufficient for non-degeneracy.

Proposition 3. Assuming (7), the following are equivalent:

(α) the a.s. martingale limitA(1) satisfiesEA(1) = 1;

(β) the a.s. martingale limitA(1) satisfiesEA(1) > 0;

(γ) the equation (8) has a solutionA such thatEA(1) = 1.

Proof. Assume (γ). ThenÃ can again be written as

Ã(t) =
1
b

∫ t

0

Λ̃(s) d ˜̃A(bs),

whereΛ̃ is independent fromΛ, etc. DenoteΛ(0) = Λ, Λ(1) = Λ̃ and so on. Then

E(A(1)|Λ(0), . . . ,Λ(n)) =
∫ 1

0

n∏
i=0

Λ(i)(bis) ds.

This martingale is uniformly integrable — but it is the same (in distribution at least) asAn(1)!

Thus,α holds. The remaining implicationsα ⇒ β ⇒ γ are obvious. �

3.2. Continuity

The following proposition gives sufficient conditions for the continuity of the limit process.

Note that, in the random cascade case [18], the non-degeneracy is equivalent with the condition

EΛ log Λ < log b.

Proposition 4. If, in addition to (7), there exists a non-trivial integrable limitA = limn→∞ An,

EΛ log Λ < log b, andEA(1) log A(1) < ∞, thenA is continuous.

Proof. Denote byB the pure jump part ofA:

B(t) =
∑
s≤t

∆A(s).
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By Proposition 3, (8) holds. Since no “new” jumps can be created in the integration, (8) holds

for B as well. Denoteg(x) = x log x. Now,

E
∑
s≤1

g(∆B(s)) = E
∑
s≤1

g

(
1
b
Λ(s)∆B̃(bs)

)

= bE
∑
s≤1

g

(
1
b
Λ(s/b)∆B̃(s)

)

= bE
∑
s≤1

[
1
b
Λ(s/b)∆B(s)(log Λ(s/b) + log

∆B(s)
b

)
]

= E
∑
s≤1

Λ(s/b)∆B(s) log
∆B(s)

b
+ E

∑
s≤1

(Λ(s/b) log Λ(s/b))∆B(s)

= E
∑
s≤1

g(∆B(s))− log(b)EB(1) + E(Λ log Λ)EB(1),

where the second equality uses the fact thatB has stationary increments. Sinceg is superad-

ditive,

E
∑
s≤1

g(∆B(s)) ≤ Eg(B(1)) ≤ Eg(A(1)) < ∞.

It follows thatlog(b)EB(1) = E(Λ log Λ)EB(1). UsingEB(1) ≤ EA(1) < ∞ andEΛ log Λ <

log b, we findEB(1) = 0 andB ≡ 0 a.s. �

3.3. Scaling of moments

Next we consider general moments. Assuming that the possible jumps ofΛ behave nicely

enough, we can show thatEA(t)q ∼ tq−logb Λq

. As straightforward corollaries, this gives

almost the samenecessaryconditions for non-degeneracy and boundedness inLp as [18].

Proposition 5. Assume (8) and thatA is non-degenerate. Letq > 0 be such thatA(1) ∈ Lq,

and assume that
∞∑

n=0

c(q, b−n) < ∞ (10)

wherec(q, t) .= Esups∈[0,t] |Λ(0)q − Λ(s)q|. Then there exist constantsC andC such that

Ctq−logb EΛq

≤ EA(t)q ≤ Ctq−logb EΛq

∀t ∈ [0, 1]. (11)

To motivate (11) we recall the simple form (9) of the invariance ofA(t) in the case of a

cascade which implies thatfor cascades

EA(1/bn)q =
(
b−qEΛq

)n EA(1)q (12)
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This simple law is a direct consequence of the fact that the multipliersΛ(i) of a cascadeA

are constant over intervals of length1/bi. Proposition 5 claims that if theq-th power of the

multipliersΛ(i) do not oscillate too much over these intervals (see (10)) then roughly the same

scaling law (11) holds.

Proof. Let us first establish (11) for the discrete pointstn = b−n, n = 0, 1, 2, . . .. To this

end, set

Rn(q) = E[A(b−n)q]− EΛ(0)q

bq
E[A(b−n+1)q].

For cascades,Rn is zero. Here, we show that it is not too large provided (10) holds. Using

equation (8) and equal distribution ofA andÃ, we find

Rn(q) = b−q E

[(∫ b−n

0

Λ(s) dÃ(bs)

)q

− Λ(0)qÃ(b−n+1)q

]
.

Next, we use that for positivex we have∣∣∣∣(∫
I

x(s) dµ(s)
)q

− C

∣∣∣∣ ≤ sup
s∈I

|x(s)qµ(I)q − C|.

SinceÃ(b−n+1) =
∫ b−n

0
dÃ(bs), we find

|Rn(q)| ≤ b−q E

(
sup

s∈[0,b−n]

|Λ(s)qÃ(b−n+1)q − Λ(0)qÃ(b−n+1)q|

)
= b−q EÃ(b−n+1)q E sup

s∈[0,b−n]

|Λ(s)q − Λ(0)q|

= b−qE[A(b−n+1)q]c(q, b−n).

Let n∗ = min{n : c(q, b−n) < EΛq} and assume thatn > n∗. Setvn = EA(b−n)q for

short. Applying the definition ofRn recursively we find

vn(q) = vn∗(q)
n−1∏
i=n∗

(
EΛq

bq
+

Ri+1(q)
vi(q)

)

= vn∗(q)
(

EΛq

bq

)n−n∗ n−1∏
i=n∗

(
1 +

bqRi+1(q)
vi(q)EΛq

.

)
The product term is the ‘correction’ needed because theΛ(i) are not constant overb-ary

intervals. The product term is finite since

∞∑
i=n∗

log
(

1− c(q, b−i)
EΛq

)
≤

n−1∑
i=n∗

log
(

1 +
bqRi+1(q)
vi(q)EΛq

)
≤

∞∑
i=n∗

log
(

1 +
c(q, b−i)

EΛq

)
.
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and (10) implies

−∞ <
∞∑

n=n∗

log
(

1− c(q, b−n)
EΛq

)
≤

∞∑
n=0

log
(

1 +
c(q, b−n)

EΛq

)
< ∞.

Noticing thatb−nq(EΛq)n = (b−n)q−logb EΛq

= t
q−logb EΛq

n shows that there exist positive

constantsC1 andC2 such that for alln

C1t
q−logb EΛq

n ≤ EA(tn)q ≤ C2t
q−logb EΛq

n .

Finally, the bounds have to be extended for allt ∈ [0, 1]. SinceAq(·) is a non-decreasing

process, it is an easy exercise to show that a correction factor large enough isbq−logb EΛq

. Thus

C = C1b
−q+logb EΛq

C = C2b
q−logb EΛq

are suitable constants for inequality (11). �

Corollary 4. If A is non-degenerate andΛ as in Proposition 5, thenEΛ logb Λ ≤ 1.

Proof. DenoteN = dbne andϕ(q) = 1− q + logb EΛq. By sub-additivity of the function

xq, q ∈ [0, 1], A(1)q ≤
∑N

i=1 µ(I(n)
i )q, whereI

(n)
i = [ib−n, (i + 1)b−n), i = 0, . . . , N .

Applying stationarity of the increments and Proposition 5 gives

EA(1)q ≤ CNbn(−q+logb EΛq) ≤ C̃ bn(1−q+logb Eλq) = C̃ bnϕ(q)

for all n. This means thatϕ(q) ≥ 0 for all q ∈ [0, 1]. Sinceϕ(1) = 0, it follows that

ϕ′(1−) ≤ 0, i.e.,EΛ logb Λ ≤ 1. �

Corollary 5. If A is non-degenerate,A(1) ∈ Lq, q > 1, and Λ as in Proposition 5, then

EΛq ≤ bq−1.

Proof. DenoteN = bbnc. By super-additivity of the functionxq, q > 1, A(1)q ≥∑N
i=1 µ(I(n)

i )q, whereI
(n)
i = [ib−n, (i + 1)b−n), i = 0, . . . , N . Applying stationarity of

the increments and Proposition 5 gives

EA(1)q ≥ CNbn(−q+logb EΛq) ≥ C̃ bn(1−q+logb EΛq)

for all n. Thus1− q + logb EΛq ≤ 0. �
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We conjecture thatEΛq < bq−1, together with some extra condition on the dependence

structure ofΛ, is sufficient to guarantee thatA(1) converges inLq This is indeed true for

q = 2. If the conjecture holds, then we may conclude thatEΛ logb Λ < 1, together with the

existence of a finiteq’th moment for someq > 1, is sufficientto guarantee thatA be non-

degenerate. Indeed, settingϕ(q) = 1− q + logb EΛq as before,ϕ′(1+) < 0 impliesϕ(q) < 0

for someq > 1, thus the convergence ofAn in Lq andEA(t) = limn EAn(t) = t.

In applications related to multifractals, we are usually interested in scaling properties. The

deterministic partition functionis defined as

T (q) .= lim inf
n→∞

log E
∑N−1

k=0 µ(I(n)
k )q

log |I(n)|
= lim inf

n→∞
− 1

n
log2 E

N−1∑
k=0

µ(I(n)
k )q,

whereI
(n)
k = [k2−n, (k+1)2−n), k = 0, . . . , 2n−1. This may be the easiest scaling function

to compute. A study of the pathwise scaling properties as well as the multifractal spectra is

under way.

Corollary 6. If A is non-degenerate,A(1) ∈ Lq, q > 1, and Λ as in Proposition 5, then

T (q) = q − 1− logb EΛq.

Proof. By Proposition 5,

lim
n→∞

1
n

log2 EA(2−n) = −q + logb EΛq.

SinceA has stationary increments,

T (q) = lim inf
n→∞

− 1
n

log2 E
2n−1∑
k=0

µ(I(n)
k )q

= − lim
1
n

log2 2nEA(2−n)q

= q − 1− logb EΛq.

�

If the original mother process is positively correlated we can show that the multiplicative

construction increases variance. This implies that our construction preservesLong Range

Dependence(LRD, see e.g. [29]). We say that a square integrable processB with stationary

increments is long range dependent if, for someγ > 1, VarB(t) ≥ ctγ for all t.

Proposition 6. Assume, in addition to (7), thatA is non-degenerate,A(1) ∈ L2 and Λ is

positively correlated. ThenVarAt ≥ Var
∫ t

0
Λ(s) ds.



Multifractal product of stochastic processes 15

Proof. SinceΛ andÃ are independent, a simple manipulation and rearrangement gives

VarA(t) = E
(

1
b2

∫ t

0

∫ t

0

Λ(s1)Λ(s2) dÃ(bs1) dÃ(bs2)
)
− t2

= E
(

1
b2

∫ t

0

∫ t

0

(Λ(s1)Λ(s2)− 1) dÃ(bs1) dÃ(bs2)
)

−
∫ t

0

∫ t

0

E(Λ(s1)Λ(s2)− 1) ds1 ds2

+E
(

1
b2

∫ t

0

∫ t

0

dÃ(bs1) dÃ(bs2)
)
− t2

+
∫ t

0

∫ t

0

E(Λ(s1)Λ(s2)− 1) ds1 ds2

=
σ2

b2

∫ t

0

∫ t

0

ρ(s1, s2)Cov
(

dÃ(bs1), dÃ(bs2)
)

+
1
b2

VarA(bt)

+Var
(∫ t

0

Λ(s) ds

)
.

The claim is proved if we can show that both terms in the second last line are non-negative.

Trivially, VarA(bt) ≥ 0. Since bothΛ andA are positively correlatedCov(dA(s1),dA(s2)) ≥

0 andρ(s1, s2) ≥ 0. (It is straightforward to replace the somewhat heuristic infinitesimal

covariance by a limit of finite increments). �

Corollary 7. If
∫ t

0
Λ(s) ds is long range dependent thenA(t) is also.

4. Examples

In order to introduce an application friendly process family, i.e., parsimonious, causal, and

easy to generate and analyze, we consider Markov jump processes which satisfy the following

assumptions.

(i) Λ(i)(·) dist= Λ(bi·), i = 0, 1, . . . , whereb > 1 andΛ is a positive, stationary, positively

correlated, piecewise constant Markov process.

(ii) The transition rates are bounded both above and below:

P (Λ(t) constant on[t, t + ∆) | Λ(t) = x) = exp(−ν(x)∆),

whereνmin ≤ ν(x) ≤ νmax for all x in the state space ofΛ.

(iii) A = limn→∞ An is non-degenerate.
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If we assume further that the variance ofΛ is finite and that its covariance decays exponen-

tially fast2 , thenb > 1 + σ2 is a sufficient condition for non-degeneracy ofA (by Corollary

2).

Proposition 7. In addition to (i)–(iii), assumeA ∈ Lq and

E
∑

Ti∈[0,t]

Λ(Ti)q ≤ Ct, (13)

whereTi are the (random) jump points ofΛ. Then the conclusion of Proposition 5 holds, i.e.,

EA(t)q ∼ tq−log EΛq

.

Proof. By assumption (ii),

EE
(
1{at least one jump on[0, t]} Λq(0)

∣∣ Λ(0)
)
≤ (1− e−νmaxt)EΛq ≤ Ct.

On the other hand,

E sup
s∈[0,t]

|Λ(0)q − Λ(s)q| ≤ E

1{at least one jump on[0, t]}Λq(0) +
∑

Ti∈[0,t]

Λ(Ti)q

 .

Thusc(q, b−n) ≤ Cb−n if (13) holds. �

Condition (13) is satisfied, for example, whenΛ is bounded orΛ(Ti)’s are independent of

Ti. Then

E
∑

Ti∈[0,t]

Λ(Ti)q ≤ EE

 ∑
Ti∈[0,t]

Λ(Ti)q
∣∣ {Ti}

 ≤ CqE(#jumps in[0, t]) ≤ C̃t,

where the last inequality follows from assumption 2.

Example 1. Consider a stationary two-state Markov processΛ(t) with transition ratesν1 and

ν2 on the state spaceS = {S1, S2}. In order to haveE(Λ(t)) = 1, the transition rates must

satisfy the equation
ν2S1

ν1 + ν2
+

ν1S2

ν1 + ν2
= 1.

The covariance is given by

Cov(Λ(t),Λ(s)) = σ2e−(ν1+ν2)|s−t|,

2This is always true if the state space is finite.
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where

σ2 =
ν2S

2
1 + ν1S

2
2

ν1 + ν2
− 1.

Constructing a family{Λ(i)} from the mother processΛ by changing time

Λ(i)(·) dist= Λ(bi·), i = 0, 1, . . . .

means that the processesΛ(i), i = 0, 1, . . ., are independent two-state Markov processes with

transition ratesbiν1 andbiν2. A realization of this construction is seen in figure 2.

Although the values of the mother processΛ are dependent on the arrival process, we may

still apply Proposition 7 since the state space ofΛ is bounded. We conclude that

T (q) = q − 1− logb EΛq = q − 1− logb

(
ν2S

q
1 + ν1S

q
2

ν1 + ν2

)
.

Example 2. Let the mother processΛ be a piecewise constant process withExp(ν) distributed

i.i.d. lengths of constant periods. For each interval we draw independently a random valueM

from a common distribution satisfyingE(M) = 1. Thus, the processΛ(n)(t) is a piecewise

constant process whose covariance is given by

Cov(Λ(n)(0)Λ(n)(x)) = Var (M)e−νbn|x| = σ2ρn(x).

A realization is shown in figure 3. Notice that this process is a generalization of Mandelbrot’s

martingale analyzed in [18]. Instead of having a deterministic division of the interval, we split

according to a Poisson process.

Since the values of the mother processΛ are independent on the arrival process we may

apply Proposition 7 and conclude that

T (q) = q − 1− logb EΛq = q − 1− logb EMq.

Formally, this is the same formula as the one for the Martingale of Mandelbrot.

Even though these two examples seem to be quite similar, there are some differences which

can also be observed visually. The first process has some sort of periodic structure due to the

fact that after drawing the initial state of a multiplier the only randomness is in the lengths

of the constant periods. The second process is clearly burstier. The obvious reason is the

unboundedness of the multipliers.
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FIGURE 2: Example 1. On the left, a realization of processA7(t) with ν1 = 2, ν2 = 1/2, S1 = 1/3,

S2 = 7/6 andb = 4. On the right, the corresponding incremental process at resolution 0.001.
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FIGURE 3: Example 2. On the left, a realization of processA7(t) with ν = 1, b = 4, andM ∼

Gamma(3, 1). On the right, the corresponding incremental process at resolution 0.001.

5. Concluding remarks

The mathematical analysis of multifractal products of stochastic processes is far from com-

plete. The aim of this paper was to give some basic definitions and properties in the general

case, and show how this construction can be applied in the case of rescaled mother processes.

The results given in this paper concern global behavior. A pathwise study of multifractal

scaling properties involves a more delicate analysis of the almost sure local structure and is the

object of current research.
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