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Abstract—Many studies have indicated the importance of
capturing scaling properties when modeling traffic loads;
however, the influence of long-range dependence (LRD) and
marginal statistics still remains on unsure footing. In this
paper, we study these two issues by introducing a multiscale
traffic model and a novel multiscale approach to queuing
analysis. The multifractal wavelet model (MWM) is a mul-
tiplicative, wavelet-based model that captures the positivity,
LRD, and “spikiness” of non-Gaussian traffic. Using a bi-
nary tree, the model synthesizes an � -point data set with
only ���� computations.

Leveraging the tree structure of the model, we derive a
multiscale queuing analysis that provides a simple closed form
approximation to the tail queue probability, valid for any
given buffer size. The analysis is applicable not only to
the MWM but to tree-based models in general, including
fractional Gaussian noise. Simulated queuing experiments
demonstrate the accuracy of the MWM for matching real
data traces and the precision of our theoretical queuing for-
mula. Thus, the MWM is useful not only for fast synthe-
sis of data for simulation purposes but also for applications
requiring accurate queuing formulas such as call admission
control. Our results clearly indicate that the marginal distri-
bution of traffic at different time-resolutions affects queuing
and that a Gaussian assumption can lead to over-optimistic
predictions of tail queue probability even when taking LRD
into account.

I. INTRODUCTION

Traffic models play a significant rôle in the analysis and char-
acterization of network traffic and network performance. Accu-
rate models capture important characteristics of traffic and en-
hance our understanding of these complicated signals and sys-
tems by allowing us to study the effect of various model param-
eters on network performance through both analysis and simula-
tion.

One key property of modern network traffic is the presence
of long-range dependence (LRD) which was demonstrated con-
vincingly in the landmark paper of Leland et. al. [1]. There, mea-
surements of traffic load on an Ethernet were attributed to fractal
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behavior or self-similarity, i.e., to the fact that the data “looked
statistically similar” (highly variable) on all time-scales. These
features are inadequately described by classical traffic models
such as Markov or Poisson models. In particular, the LRD of
data traffic can lead to higher packet losses than that predicted
by classical queuing analysis [1, 2].

These findings were immediately followed by the devel-
opment of new fractal traffic models [3–5]. The most
broadly applied fractal model is the fractional Brownian mo-
tion (fBm), ����, whose discrete increment process ���� ��
� ��� � ������ ����, called fractional Gaussian noise (fGn),
has an autocorrelation of the form

����	 �
��



�������� � ���� � 
����� � �� � ����� (1)

with � a constant. Gaussianity and the strong scaling of fBm
enable rigorous analytical studies of queuing behavior [6–10],
thus increasing the popularity of the fBm/fGn models.

Though fGn is an appropriate traffic model in some cases [11,
12], it can only model real-world traces with the rigid, restrictive
correlation structure (1). Indeed, convincing evidence has been
produced establishing the importance of short-term correlations
for buffering [13–15], and so-called relevant time scales have
been discovered [14, 16, 17].

Generalizations of fBm/fGn with a more flexible correlation
structure than (1) can be synthesized almost effortlessly using
the powerful decorrelating capability of the wavelet transform
[18–21]. There, independent Gaussian wavelet coefficients with
variance decaying appropriately with scale form the building
blocks for modeling both the long and short-term correlations
of a target data set. Efficient ���� algorithms based on the tree
structure of wavelet coefficients are available to synthesize � -
point data sets [22, 23]. We will term all such models wavelet-
domain independent Gaussian (WIG) models.

As a consequence of their Gaussian nature, the fBm/fGn/WIG
models can produce unrealistic synthetic traffic traces in cer-
tain situations. In many networking applications, for instance,
we are nowhere near the Gaussian limit, in particular on small
time scales. Indeed, various authors have observed heavy-tailed
marginals in traffic [24, p. 364], [25]. More practically speaking,
when the standard deviation of the data approaches or exceeds
the mean, considerable portions of the fBm/fGn/WIG synthesis
are negative (see Figure 1(a) and (b)).

Unlike the WIG model, the multifractal wavelet model
(MWM), based on a multiplicative cascade in the wavelet do-



(a) LBL-TCP-3 data (b) WIG synthesis (c) MWM synthesis
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Fig. 1. Modeling bursty traffic data: Bytes-per-time arrival process for (a) wide-area TCP traffic at the Lawrence Berkeley Laboratory (trace LBL-TCP-3) [26], (b)
one realization of the state-of-the-art wavelet-domain independent Gaussian (WIG) model [22], and (c) one realization of the multifractal wavelet model (MWM)
synthesis. The MWM trace closely resembles the real data, while the WIG trace does not.

main, guarantees a positive output [27]. In its simplest form,
the MWM is closely related to the wavelet-based construction
of fBm/fGn, having the same short list of parameters (mean,
variance, 	). However, the MWM framework boasts the flex-
ibility, if desired, to additionally match the short-term corre-
lations like the WIG model. The superiority of the MWM at
matching the qualitative visual appearance (see Figure 1(c)), the
marginals (see Figure 4(c)), and the queuing behavior (see Fig-
ure 5) [27, 28] suggests that the multiplicative MWM approach
is more appropriate than the additive Gaussian one.

The main contribution of this paper is a novel multiscale queu-
ing analysis. For an infinite-length buffer with constant link ca-
pacity 
, the queue length (assuming the queue was empty some
time in the past) is given by

� � ��
�
��� � �
� (2)

where �� is the total traffic that entered the queue in the past �
instants. In other words, the queue size (2) is a supremum func-
tion of the traffic arrivals aggregated at multiple time-scales. For
the WIG and MWM models, aggregates at dyadic time scales
(i.e., �� for � � 
� � � ���) have simple expressions, and are
related to each other by independent innovations. We exploit this
fact to derive an approximation to the tail queue probability. The
resulting multiscale queuing formula, which we call MSQ���,

� is valid for any given queue length �,
� closely approximates the tail queue probability as experi-

ments verify,
� requires statistics of traffic at only a few dyadic time-scales,
� is easy-to-use, and
� clearly demonstrates the importance of matching multiscale

marginals (especially the tail of the marginal) in addition
to the variance at different time-scales (i.e., the correlation
structure), for accurate predictions of queuing behavior.

As a consequence, the MWM becomes viable for applications
requiring models with accurate queuing formulas such as call
admission control.

After introducing wavelets and explaining the WIG model in
Section II, we describe the MWM and demonstrate its superior-
ity over the WIG in capturing the marginals of traffic in Section

III. After experimentally proving the importance of the non-
Gaussian nature of traffic on queuing, we introduce the novel
multiscale queuing analysis, which we apply to the WIG and
MWM in Section IV. We provide empirical evidence for the
accuracy of our theoretical queuing formulas in Section IV, use
our queuing formulas to explain why marginals and LRD affect
queuing in Section V and conclude in Section VI.

II. CLASSICAL WAVELET MODELS FOR LRD PROCESSES

A. Long-range dependence

Consider a discrete-time, wide-sense stationary random pro-
cess ��� � � ��� with auto-covariance function �� ��	 �
������ �����. A change in time scale can be represented by
forming the aggregate process � ���

� , which is obtained by aver-
aging�� over non-overlapping blocks of length� and replacing
each block by its mean

�
���
� �

������� � � � �����

�
� (3)

Denote the auto-covariance of � ���
� by �

���
� ��	. The process

� is said to exhibit LRD if its auto-covariance decays slowly
enough to render

��
���� �� ��	 infinite [29]. Equivalently,

� �
���
� ��	 � � as � � �, and the power spectrum �����

is singular near � � �.
One example of an LRD process is fGn (1), whose LRD

is captured by the Hurst parameter 	 (larger 	 	 stronger
correlation or LRD). To estimate 	 by the variance-time plot
method, we fit a straight line through the plot of an estimate
of ��� var�� ���� against ����. More reliable estimators of 	
have been devised [30], in particular an unbiased one based on
wavelets [31, 32].

B. Wavelet transform

The discrete wavelet transform provides a multiscale signal
representation of a one-dimensional random signal���� in terms
of shifted and dilated versions of a prototype bandpass wavelet
function ���� and shifted versions of a lowpass scaling function



���� [33, 34]. For special choices of the wavelet and scaling
functions, the atoms

��	���� �� 
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�
 (4)

� � � ��, form an orthonormal basis, and we have the signal
representation [34]

���� �
�
�

���	� ���	���� �

��
����

�
�

��	� ��	����� (5)

Here the wavelet coefficients ��	� and the scaling coefficients
��	� are given by

��	� ��

�
������	���� �� ��	� ��

�
������	���� ��� (6)

Without loss of generality, we will assume �� � �.
In this representation, � indexes the spatial location of analysis

and � indexes the scale or resolution of the wavelet analysis —
larger � corresponds to higher resolution and � � � indicates the
coarsest scale or lowest resolution of analysis. In practice, we
work with a sampled or finite-resolution representation of ����,
replacing the semi-infinite sum in (5) with a sum over a finite
number of scales � 
 � 
 �� � � � ���.

In this paper, we restrict our attention to the simplest wavelet
system, that of Haar. The Haar scaling and wavelet functions
are given by (see Figure 2(a))

���� �

�
� � 
 � � �
� else

� ���� �

��
	

� � 
 � � ��

�� ��
 
 � � �
� else.

(7)
Since ��	���� is a rectangular function, the Haar scaling coeffi-
cients��	� (6) represent the local mean values of the signal in the
time intervals ��
��  �� � ��
�� 	 and thus form a discrete-time
approximation of ���� at resolution �. By design, the supports
of the ��	���� are nested within each other. This makes it natural
to use a binary tree (see Figure 2(b)) to display the relationship
between the coefficients ��	�. Nodes at lower horizontal levels
in the tree correspond to representations of the signal at finer
resolutions.

The Haar wavelet transform of a signal can be computed re-
cursively starting from its finest-scale scaling coefficients via
[34]

����	� � 
��
����	�� � ��	�����

����	� � 
��
����	�� � ��	������
(8)

This corresponds to moving up the binary tree and storing in the
Haar wavelet coefficients ��	� the detail information lost while
going from fine to coarse resolutions (see Figure 2(b)).

The inverse Haar wavelet transform is computed via

��	�� � 
��
������	� �����	��

��	���� � 
��
������	� �����	��
(9)

and is equivalent to moving down the scaling coefficient tree to
finer representations of the signal (Figure 2(b)). It is easily seen

that the forward and inverse Haar wavelet transforms of an � -
point signal can be computed in ���� operations, using (8) and
(9) respectively.

We introduce a new process � �����	, a discrete-time approxi-
mation to ���� defined by

������	 ��

� ��������

����
���� d�� (10)

For notational simplicity, we will assume that ���� lives on �� �	
and that ������	 is a length-
� discrete-time signal. Thus, there
is only one scaling coefficient ��	� in (5), that is, a single tree of
scaling coefficients. (A more general case with multiple scaling
coefficients at the coarsest scale is treated in [27].) We will focus
on modeling the finest-scale scaling coefficients:

������	 � 
��
���	� � � � � � � �  
� � �� (11)

C. Wavelet-domain independent Gaussian (WIG) model

Wavelets serve as an approximate Karhunen-Loève or decor-
relating transform for fBm [18], fGn, and more general LRD
signals [23]. Hence, the difficult task of modeling these highly
correlated signals in the time domain reduces to a simple one of
modeling them approximately by an uncorrelated process in the
wavelet domain.

The WIG model synthesizes a Gaussian process capturing
both the long and short-term correlations, by generating the par-
ent node��	� of the scaling coefficient tree as a Gaussian random
variable and by generating the wavelet coefficients as indepen-
dent (uncorrelated), zero-mean Gaussian random variables iden-
tically distributed within scale according to ��	� � ��� ��� �

with ��� the required wavelet-coefficient variance at scale �

[18–22]. For example, a power-law decay for the � �
� ’s leads to

approximate wavelet synthesis of fBm or fGn [18, 20]. Scaling
coefficients at finer scales on the tree are then recursively com-
puted through (9) until the finest scale scaling coefficients ��	�

and hence the required signal � ���
WIG ��	 are obtained. The result

is a fast ���� algorithm for generating a length-� signal, char-
acterized by approximately ������� (the number of time scales)
parameters (see Figure 2(c)).

The WIG is an additive model, because we can express the
signal ����

WIG ��	 directly as a sum of independent random vari-
ables. First, we need some notation. Each shift � at scale �
has a unique binary representation � �

����
�� ��


���� where
each �� � �� ��. Letting �� � � and ��� � � div 
 we have
� � 
������

�
�� �

���
��� �

�
�

���� . The shifts � correspond

to the ancestors of � at scale � and so we can write

�
���
WIG ��	 � 


��



��	� �

����
��

�����
�

�

��	��

�
� (12)

This result can be derived by iteratively applying (9).
The WIG model is Gaussian by construction, but network traf-

fic signals (such as loads and interarrival times) can be highly
“spiky” and non-Gaussian (recall from Figure 1). We seek a
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�
�
�.

more accurate marginal characterization for these spiky, non-
negative LRD processes, yet wish to retain the decorrelating
properties of wavelets and the simplicity of the WIG model.

III. MULTIFRACTAL WAVELET MODEL

A. Haar wavelet transform and positive signals

In order to model non-negative signals using the Haar wavelet
transform, we must constrain the scaling and wavelet coefficient
values to ensure that ���� in (5) is non-negative. While cumber-
some for a general wavelet system,� these conditions are simple
for the Haar system.

Since the Haar scaling coefficients ��	� represent the local
mean values of the signal at different scales and shifts, they are
non-negative if and only if the signal itself is non-negative, that
is, ���� � �  ��	� � � � � �. Combining (9) with the
constraint ��	� � �, we obtain the condition

���� � �  ���	�� 
 ��	� � � �� (13)

B. MWM model

The positivity constraint (13) inspires a very simple multi-
scale, multiplicative signal model for positive processes. In
the multifractal wavelet model (MWM) [27] we compute the
wavelet coefficients recursively by

��	� � ��	� ��	� (14)

where the ��	�’s are independent random variables supported on
the interval ��� �	.

The MWM synthesizes a data trace in a manner similar to
the WIG. After generating the coarsest scale scaling coefficient
��	� and the multipliers ��	�, the MWM generates scaling coef-
ficients at finer scales of the scaling coefficient tree recursively
using (9) and (14), that is (see Figure 3(a))

��	�� � 
��
��� �����	������	�
��	���� � 
��
��������	������	�

(15)

�The conditions are straightforward also for certain biorthogonal wavelet
systems.

until the finest scale has been reached.
The MWM is a multiplicative model, because we can express

the signal ����
MWM��	 directly as a product (or cascade) of indepen-

dent random multipliers ����	�. Using the notation introduced
in Section II-C, we have

�
���
MWM��	 � 


�� ��	�

����
��


� � �����

�

��	��

�
 (16)

which should be compared with (12).
As a particular consequence of the multiplicative structure of

(16), the process � �����	 will be positive, LRD (see Section III-
C below), and have a “spiky” appearance. This matter is better
explained in the framework of multifractals, which are beyond
the scope of this paper (see [27, 28]).

It is easily shown that the total cost for computing � MWM
signal samples is ����. In fact, synthesis of a trace of length

�� data points takes just seconds of workstation cpu time. See
[35] for a similar model to the MWM used as an intensity prior
for wavelet-based image estimation.

We choose the multipliers ��	� to be symmetric about 0 and
identically distributed within scale; it is easily shown that these
two conditions are necessary for the �

���
MWM process to be first-

order stationary [27]. Due to its flexible shape, compact support
and tractability to closed-form calculations, we choose the sym-
metric beta distribution [36],�  ��	��!�  !�� (see Figure 3(b)) for
the ��	�’s, with !� the beta parameter at scale �. In our simula-
tion experiments we choose	

��	� �  �	� �!�� !��� (17)

with " � �.

�We denote a beta random variable with support ��	 �� by ���
�In general, any other distribution with positive support can be used for ���� .

Even though it bounds ������� to a maximum value of � , we choose the -
distribution to facilitate approximations in the queuing analysis of the MWM in
Section IV-F.
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������	 �� resembles a binomial distribution, and for � 	 � it
has a uniform density. For � � � the density is close to a truncated Gaussian
density with increasing resemblance as � increases.

C. Correlation matching

Combining (14) and the fact that the variance of a random
variable � �  ��	��! !� is given by var��	 � ���
! � ��, we
obtain

var�����	��

var���	��
�


 var �����	� 	

var ���	�	 �� � var �����	�	�
�

!� � �

!��� � �
�

(18)
Thus, the parameters !� control the wavelet-domain energy of
the signal on all scales, hence also the variance on all time scales
and in particular the LRD parameter 	 . Given training data, we
set the !�’s using estimates of the variance of the trace’s Haar
wavelet coefficients at different scales using (18). With one pa-
rameter per wavelet scale, the MWM has approximately �����
parameters for a trace of length � . These could be reduced to,
say, match only the variance decay, i.e., only the LRD param-
eter 	 . See Table I for a comparison of the WIG and MWM
properties.

To complete the modeling, we must choose the parameters ! �,
!��, and " of the model. Since

�
!� � ��var���	�� � ����
�
�	�	 (19)

we calculate !� from estimates of ���� �
�	�	 and var���	��. The

parameters !�� and " of ��	� are chosen using estimates of
�����	�� and var���	��.

D. Matching burstiness and LRD: WIG vs. MWM

To test the capability of both the WIG and MWM models,
we use two real data traces:
 the LBL-TCP-3 trace of Lawrence

�The traces contain traffic generated by closed-loop flow control algorithms
(e.g., the transmission control protocol (TCP)). Such traffic is dependent on net-
work parameters such as link capacities. Thus, using “open-loop” models such
as the MWM to model TCP traffic for network design purposes (e.g., setting link
capacities) can produce misleading results [37]. Open-loop models are more
appropriate for traffic independent of the network (e.g., streaming video) and
possibly for closed-loop traffic in applications other than network design.

TABLE I

Comparison of the tree-based WIG and MWM models. For approximating a

signal with a strict fGn covariance structure as in (1), both the WIG and MWM

require only three parameters (mean, variance, and �).

WIG MWM
Building Independent Independent
blocks wavelet coeffs. multipliers

Marginals Gaussian Asymp. Lognormal
LRD matched matched

Bursts Monofractal Multifractal
Parameters 
 � ����� 
 � �����
Synthesis ���� ����

Berkeley Laboratory (1994) [26] and the BC-pAug89 trace of
Bellcore (1989) [1]. To model the data, we use estimates of the
var���� at the �� finest dyadic scales, where there is sufficient
data to obtain good estimates.

Figure 1(c) demonstrates that the MWM produces positive
“spiky” data akin to the real traffic, contrary to the WIG model. �

Also, the marginals of the MWM traces match that of the LBL-
TCP-3 trace much better than the WIG (see Figure 4). This
seems surprising since we use all the MWM’s parameters to
match only the correlation structure just like the WIG. The supe-
riority of the MWM indicates that both its multiplicative struc-
ture and the choice of  -distributions for the multipliers, are
natural for modeling these data sets. However, the MWM can
exactly match higher-order moments of training data by using
multipliers with more parameters than the  -distribution. By de-
sign, both the WIG and MWM models match the second-order
correlation structure (see Figure 4(d)).

IV. MULTISCALE QUEUING ANALYSIS

Queuing analysis is fundamental to network engineering.
Buffer dimensioning in routers and call admission control are
but two of the many crucial areas in networking research that
rely on an accurate characterization of the queuing behavior of
data traffic.

The discovery of LRD in traffic has created a challenging
new area of research in queuing theory. Analytical studies have
proven that an infinite-length buffer with constant service rate
fed with traffic loads from fGn-based models has a tail queue
distribution that decays asymptotically like a Weibullian law

P�� # �	 � ����Æ������� (20)

Here, Æ is a positive constant that depends on the service rate of
the queue [7, 8]. Clearly, (20) reveals that the decay of the tail
queue distribution for fGn with 	 # ��
 is much slower than
the exponential decay predicted by short-range dependent (SRD)
classical models [2] which correspond to the case 	 � ��
. In

	Additive models such as the WIG cannot possess multifractal properties sim-
ilar to the MWM [27]. In order for an additive model to exhibit multifractal
behavior the variances of the wavelet coefficients would have to depend not only
on scale but also on location.
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spite of this result, there is still an ongoing discussion on the
effect of LRD on queuing, with researchers arguing both for and
against its importance [14–17, 38, 39].

The impact of multiscale marginals on queuing has been
demonstrated experimentally in [28]. To better understand how
marginals affect queuing, we develop a novel queuing analy-
sis which is particularly adapted to multiscale representations
of signals and processes. More precisely, exploiting the inher-
ent binary tree structure of the Haar scaling coefficients of both
the WIG and the MWM traffic models, we derive approximate
formulas for their tail queue probability. Our queuing formulas:

1. are applicable to tree-based/multiresolution models such as
the additive WIG and multiplicative MWM,

2. are valid for any queue size, unlike (20) which is an asymp-
totic result,

3. capture more complicated correlation structures than the
mere asymptotic LRD exponent 	 , and

4. incorporate the entire distribution of the data at multiple
time resolutions and not only the second-order statistics.

A. Analytic queuing for tree-based multiscale models

In this section, we develop a new multiscale approach to queu-
ing analysis. We derive an approximate formula for the tail
queue probability of tree-based multiscale models such as the
WIG and MWM.�

Consider a discrete time random process $ � � ��, the traf-
fic load, which we think of as entering an infinite buffer single
server queue with constant link capacity 
. Let �  represent the
queue size at time instant �. Denote by �� the aggregate traffic
arriving between time instants �� � � and �, that is,

�� ��

��
�����

$� (21)

In the sequel, we refer to �� as representing the data at time-
scale �. Set �� � �. Using Lindley’s equation [40], it is easily
shown that

�� � ������� ��� � �
���� � �� � ��
 � � � ��	� (22)


A similar analysis may be possible for models not based on trees, but with an
explicit relationship between data at different time scales.

Since ��� � � for all �, we must have

�� � ��
���

��� � �
�� (23)

Denoting by�� the last instant that the queue was empty before
time instant � (we set �� � � if �� � �), we obtain

�� � �� � �
 
 ��
���

��� � �
�� (24)

Thus if the queue was empty at some time in the past, then

�� � ��
���

��� � �
�� (25)

In the remainder we will study exclusively �� at � � �, and
write � �� �� for ease of notation.

Note that (25) provides a direct link between queue size �
and the aggregate of the traffic arrival process �� at multiple
time scales �. This and the fact that tree based models provide
explicit and simple formulas of �� for dyadic time scales (i.e.,
� � 
�), are key to our analytical queuing formula. To this end,
we make the following three assumptions which we will justify
later:

A1. Dyadic time scales are representative of all time scales.
A2. Large arrivals at dyadic time scales are ‘nearly’ indepen-

dent.
A3. The tail queue probability of tree based models at the last

instant 
� � � are representative of the empirical tail queue
probability of the fitted data.

In short, we claim that the following approximation is valid:

P�� � �	 � P� ��
����	���	��

���� � 

�� � �	

� P����� � 

�� � � � � �� � � �  ��	

�

��
��

P���� � �� 

�	�

This leads us to the following queuing approximation which we
call the multiscale queue (MSQ):

MSQ��� �� ��
��
�� P������ � �� 

��	� (26)

Note that multiscale marginals enter into (26) and not just the
correlation structure (or variance-time plot) of the process.
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Fig. 5. Queuing performance of real data traces and synthetic WIG and MWM traces: In (a), we observe that the MWM synthesis matches the queuing behavior of

the LBL-TCP-3 data closely, while in (b) the WIG synthesis does not. In (c) and (d), we observe a similar behavior with the BC-pAug89 data. We also observe
that the multiscale queue (MSQ) is a close approximation to the empirical queuing behavior for both synthetic traffic loads (both WIG and MWM) and that it is a
closer than the critical dyadic time scale queue (CDTSQ). In all experiments in this paper, confidence intervals plotted correspond to a confidence level of 
��.

Before going into a more detailed argument supporting this
approximation we invite the reader to inspect Figures (5) and (6)
for convincing numerical simulations which indicate that

P�� # �	 � MSQ���� (27)

B. Restriction to dyadic scales (A1)

To justify A1, we study the quantity��, which is obtained by
restricting the supremum in (25) to time scales which appear nat-
urally in a multiscale representation, i.e., the dyadic time scales:

�� �� ��
����	���	��

���� � 

��� (28)

The first approximation of our analysis reads then as

A1 � P�� # �	 � P��� # �	� (29)

Clearly, �� 
 � and P�� # �	 � P��� # �	. We justify A1
using the notion of a critical time scale (CTS) [14, 16, 17]. The

CTS is defined as

�	 � arg ��
���

P��� � 
� # �	 (30)

and the critical time-scale queue (CTSQ) as

CTSQ��� �� P���� � 
�	 # �	� (31)

It has been shown that CTSQ��� � P�� # �	 [14, 16, 17].
Similarly, we introduce now the critical dyadic time-scale

(CDTS) as

�	� � arg ��
����	���	��

P���� � 

� # �	 (32)

and the critical dyadic time-scale queue (CDTSQ) as

CDTSQ��� �� P����
�
� 
�	� # �	� (33)

Obviously, CDTSQ��� 
 P��� # �	 
 P�� # �	.
With the following two points we argue that an estimate of

queue length distribution using critical time scales does not
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Fig. 6. Justification of the MSQ We compare analytical queuing formulas (see

text) and empirical queuing behavior of WIG (a and c) and MWM (b and
d) traces with an fGn correlation structure as in (1). In all cases, the mean,
standard deviation and link capacity were , , and �� units respectively. In
the case of WIG with (1), explicit formulas for the CTSQ exist [16]. The
CDTSQ and CTSQ are almost identical indicating that dyadic scales alone
can capture queuing behavior. The multiscale queue (MSQ) gives a good ap-
proximation to the empirical queuing behavior and is a closer approximation
than the CDTSQ.

change much if we take into account only the distributions at
dyadic time scales (CDTSQ) instead of all time scales (CTSQ).
The arguments are as follows:

1. Dyadic time scales form only a small subset of ��� and so,
(25) and (28) could be very different. However, our queu-
ing experiments combined with the analytical expressions
for CDTSQ (and CTSQ in the case of WIG where explicit
formulas are available [16]) demonstrate convincingly that
dyadic time scales are indeed representative for all time
scales (see Figure 6).

2. The CDTS takes only time scales up to 
� into account.
However, this is valid if for a given queue size � and a given
queue size distribution the bound � is chosen large enough.
We will comment further on the dependence of the MSQ on
� in a forthcoming paper [41].

Finally, note that the CDTSQ is a computationally efficient
substitute for the CTSQ since it requires statistics at only a few
dyadic time-scales.

C. Approximate independence of large arrivals on dyadic time
scales (A2)

In our queuing analysis, we set

% �� ������ � �� 

���� (34)

Since %�
 �� ������ # �� 

��� corresponds to large values

of ����� , we refer to the %�
 ’s as large arrival events.

From (28) we see that

P��� # �	 � �� P��� � �	 � �� P�����%	� (35)

Thus, the MSQ (26) would equal P���	 exactly if the events %

were independent. However, the %’s are highly probable events
with P�%	 � �. More precisely, most of the numbers P�%	 are
nearly indistinguishable from �. Thus,

MSQ��� � P��� # �	 (36)

which is confirmed by our numerical experiments. This implies
that the events %’s (and equivalently the large arrival events
%�
 ’s) are “nearly” independent.
A more rigorous comparison of MSQ��� and P��� # �	 can

be obtained using the following Lemma which is proven in [41].

Lemma: Assume that the events % are of the form % � �� �
��, where � � �� � � � � � ��� for � 
 � 
 � and where
�� � � �  �� are independent, otherwise arbitrary random vari-
ables. Then for � 
 � 
 �

P�%�%�� � � �  %�	 � P�%	�

Given the Lemma and using (28) we have

P��� # �	 � �� P��� � �	 � �� P�����%	

� �� P�%�	
��
��

P�%�%�� � � �  %�	


 ��

��
��

P�%	 �� MSQ���� (37)

We conclude that the MSQ is a conservative approximation
of the dyadic queue tail probability. Moreover, P�� # �	 �
P��� # �	 
 �� ���.

D. Stationarity assumption (A3)

Performing an exact queuing analysis of tree-based models
such as the WIG and MWM at an arbitrary time instant is very
complicated and will produce distributions of the queue size
which are non-stationary and vary with time. For an illustra-
tion, note that in Figure 2(b) the neighboring nodes � ���	
� and
����	
��� share a parent node ����	�� at scale � � � while the
nodes ����	
��� and ����	
��� do not.

The queuing analysis at the last instant 
� � � of a tree-based
model, on the other hand, is simple. Indeed, the Haar scaling
coefficients on the branch linking ��	� and ��	���� (the right
edge of the tree of Figure 2(b)) are related to the quantities � ��

in (21) by

����� � 

�
��	���� for � � � � � �  � (38)

and a queuing analysis is feasible. Choosing this particular time
instant as the point of analysis is our third assumption which can
be formulated in terms of the arriving traffic $  as

A3: $ � ��
� � � � �	 � � ��� � � � �
� � ��



Assuming stationarity of the data, a tree-based model will pro-
duce the same statistics no matter where its right most branch is
placed. This justifies A3.

E. Multiscale queuing analysis (MSQ) of the WIG

For the WIG, on choosing

� ��

�
��	� if � � �
�

��	���� otherwise

(39)

we obtain from (38)

����� � 

�

���
���

�� � 

��� (40)

Now on setting
� � �
 � 

� (41)

we observe that the WIG satisfies the conditions of the Lemma.
Since for the WIG ����� is Gaussian, the probability P�%	

can be computed from a Gaussian cumulative distribution [36].

F. Multiscale queuing analysis (MSQ) of the MWM

Denoting ��	���� by �� , (38) reduces to

����� � ��	�

���
���

�������
� (42)

The event % is thus

% � ���	�

���
���

������ � �
 � 

�� (43)

�

��
	������	�� �

���
���

��������� � �����

 � 

��

��
� �

By setting

� ��

�
������	�� if � � �
�������� otherwise

(44)

and
� �� �����


 � 

�� (45)

we see that the Lemma applies to the MWM.
For the MWM, obtaining P�%	 is not as straightforward as for

the WIG. Recall from Section III-B that

��	� �  �	� �!�� !��� (46)

and
�������
 �  �	��!�  !��� (47)

Thus, (42) implies that ����� is the product of ��� independent
 random variables. Using Fan’s approximation [36, 42], we
approximate the distribution of ����� by a beta law supported
on ��" 	 as follows

�����
�
�  �	� �& '�� (48)

The parameters & and ' are given by

&���( � ������� � ( � ' � &��� ���� (49)

where � � 
� and

( �

���
����

�!� � ��


�
!� � ��
� (50)

This approximation matches the mean and variance of the ac-
tual distribution of ����� exactly, and closely approximates the
first �� moments [42]. We thus use the cumulative distribution
of the  �	� �& '� random variable to calculate P�%	 [36].

V. MULTISCALE MARGINALS, LRD AND QUEUING

The impact of the non-Gaussian nature of the real data on
queuing is considerable, as we demonstrate in Figure 5. There,
we observe that all traces exhibit Weibullian tail queue proba-
bilities when input to an infinite-length single-server queue (link
capacity !�� bytes/unit time), which is typical for LRD traffic
(compare (20)). However, apart from this asymptotic match, the
MWM is much closer to the queuing behavior of the real data
traces.

The MSQ uses not just the variance (or LRD) of the data, but
its entire distribution at multiple time scales. It is thus a tool fit
to assess the influence of marginals and LRD on queuing and
hence the difference in queuing behavior of the Gaussian WIG
and the approximately log-normal MWM models.

In particular, observe from (26) that the MSQ increases as
the distribution of data at different scales becomes more heavy-
tailed. Thus, a Gaussian LRD process will have a higher MSQ
than a Gaussian SRD process. However, Gaussian LRD models
cannot capture the tail distribution of non-Gaussian processes
and hence can lead to optimistic predictions of queuing behav-
ior. In this sense, the MSQ reveals the limitations of Gaussian
modeling.

VI. CONCLUSIONS

The importance of capturing scaling properties when model-
ing traffic loads has now been well recognized [1, 27]. In our
work, we rely on multiscale models such as the Gaussian WIG
and non-Gaussian MWM models. Both models are built on bi-
nary trees, which allow fast ���� algorithms for synthesis of an
��point data set. By matching the variance of a given traffic
trace on all dyadic scales, both models capture the correlation
structure with only about ���� parameters.

The main contribution of this paper is our multiscale queuing
(MSQ) approach, which provides a closed form queuing formula
for tree-based models. Unlike earlier work on queuing of LRD
traffic [8,9], our formula takes into account the entire cumulative
distribution of the traffic at different time scales and not just their
variances.

The implications are manifold. First, the MSQ is applicable
to multiscale models such as the WIG and the MWM. As a con-
sequence, the versatile MWM model is now viable for numerous
networking applications, including call admission control.



Second and most importantly, the MSQ is to our knowledge
the first tool for assessing the impact of multiscale marginals on
queuing. Earlier queuing experiments with synthetic traffic pro-
duced using the WIG and the MWM have already suggested that
marginals have an influence on the queue length distributions of
LRD traffic [28]. Confirming these findings with the marginal-
sensitive MSQ, we are now able to conclude that indeed mod-
eling heavy-tailed spiky data with Gaussian models can lead to
over-optimistic predictions of tail queue probability.

Thirdly, since the MSQ captures the queuing behavior of train-
ing data while using statistics from just the dyadic time-scales,
we conclude that dyadic time-scales though few in number, effi-
ciently capture the queuing behavior of traffic.

Our future research will aim at making the MWM practicable
for prediction. The parameters of the MWM could also be used
to capture the effect of different protocols on shaping data flow.
In short, the use of the MWM in real-time network protocols and
control algorithms seems very promising.
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