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ABSTRACT

Multiplicative processes and multifractals proved useful in
various applications ranging from hydrodynamic turbulence
to computer network traffic. It was recently shown and ex-
plained how and why multifractal analysis could be fruitfully
placed in the general framework of infinitely divisible cas-
cades. The aim of this contribution is to design processes,
called Infinitely Divisible Cascading (IDC) noise, motion, and
random walk. These processes possess at the same time sta-
tionary increments as well as multifractal and more general
infinitely divisible scaling that can be prescribed a priori over
a continuous range of scales. This communication focuses on
the specific scale invariant case. To illustrate the powerful-
ness of the method, we mention that IDC processes can ex-
actly mimic the scaling behaviors predicted by the celebrated
She-Ĺevêque model of turbulence.MATLAB routines imple-
menting those processes are available from our Web pages.

1. MOTIVATION

Scale invariance and related phenomena have received con-
siderable attention in the past from the point of view of both
analysis and modelling. Various kinds of scaling form an in-
disputable component of empirical data observed in a wide
variety of applications ranging from natural phenomena (hy-
drodynamic turbulence [1], biology and body rhythms [2]. . . )
to purely human phenomena created by mankind’s activities
(computer networks [3, 4], financial markets [5, 6]. . . ). Of-
ten, the presence of scaling in the data can be tied to crucial
properties of the system, e.g., high volatility in markets and
large waiting queues in computer networks.

Most prominently, self-similar processes have been fa-
vored as models for scale invariance for their simplicity. In-
deed, any self-similar processX(t) with stationary increments
spots an appealing and simple scale invariance. LetδτX(t) =
X(t + τ)−X(t) denote its increments over a lagτ , then

IE|δτX(t)|q = cq · |τ |qH , (1)

whereH is the Hurst parameter. To provide processes with
more realistic scaling which are able to match real world data,
multiplicative cascades and the framework of multifractal anal-
ysis were introduced, allowing a non-linear dependence on
the orderq of exponentsζ(q) 6= qH in (1) so that:

IE|δτX(t)|q = cq · |τ |ζ(q). (2)

The synthesis of processes that possess a priori prescribed
multiscaling properties as well as other casual characteristics
such as second-order stationarity of the increments or a con-
tinuous rather than discrete scaling region proved extremely
difficult. Partial solutions have been provided by several au-
thors [7, 8, 9, 10]. This is a contribution to the pavement of
this difficult path [11]. This paper sets off to construct new
processes called Infinitely Divisible Cascading noise, motion,
and random walk with flexible and natural scaling proper-
ties. The progression of moments may depend in a non linear
way on the orderq, and can be determined between arbitrary
scales. Moreover, it may depend in an arbitrary way on scale,
not necessarily in form of a power law. To this purpose, one
can place multifractal analysis in the more general framework
of infinitely divisible cascades (IDC) [12, 13] characterized
by:

IE|δτX(t)|q = cq exp[−H(q) · n(τ)]. (3)

Note how the framework of LIDC encompasses scaling in the
form of power laws by settingn(τ) = − log(τ). The ex-
tra degree of freedom in scale dependence was found highly
useful for the analysis and modelling of empirical data in tur-
bulence [14] and computer network traffic [15]. For sake of
simplicity, this paper focuses on the scale invariant case only.

2. INFINITELY DIVISIBLE CASCADING NOISE

We introduce through the following notion a generalization
of iterative multiplication. The following Infinitely Divisible
Cascading noise can be seen as a generalization of the ”prod-
uct of pulses” by Barral & Mandelbrot [8] using ideas due to
Schmitt & Marsan [10].
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Fig. 1. Binomial multiplicative cascade. The construction
of the Binomial cascade follows a rigid dyadic, deterministic
geometry; the density is an iterative product of pulses located
in the time-scale half-plane at(k/2n, 2n).

Definition 1. LetG be an infinitely divisible distribution with
moment generating functioñG(q) = e−ρ(q). Letdm(t, r) =
g(r)dtdr a positive measure on the time-scale half-planeP+ :=
R × R+. This choice of a time-invariantcontrol measurem
will ensure stationarity. To provide scale dependence, a so-
calledcone of influenceCr(t) is defined for everyt ∈ R, such
thatCr(t) = {(t′, r′) : r ≤ r′ ≤ 1, t− r′/2 ≤ t′ ≤ t + r′/2}
(see Figure 2).
An Infinitely Divisible Cascading noise(IDC-noise) is a fam-
ily of processesQr(t) parametrized byr of the form

Qr(t) =
exp [M(Cr(t))]

IE[expM(Cr(t))]
. (4)

Here, the time-scale half-planeP+ is endowed with the in-
finitely divisible, independently scattered random measureM
distributed byG and associated to its so-called control mea-
suredm(t, r). This measureM imprints scaling structure as
well as marginal distributions on the cascade.

The IDC-noise can be recognized as a ”continuously iter-
ative” multiplication (compare Figure 1 and Figure 2). One
major property of infinitely divisible cascading noises is:

IE[Qq
r] = exp [−ϕ(q)m(Cr)] (5)

whereϕ(q) = ρ(q) − qρ(1) andm(Cr) =
∫∫
Cr

g(r)drdt.
Note the similarity between (5) and (3).

3. INFINITELY DIVISIBLE CASCADING MOTION
AND RANDOM WALK

Where there is noise, there must be motion. Analogous to
the theory of T-Martingales and of multiplicative cascades in
general we will be interested in the distributional convergence
of Qr. To this end we define:
Definition 2. An Infinitely Divisible Cascading motion(IDC-
motion)A(t) is the limiting integral of an IDC-noiseQr(t):

A(t) = lim
r→0

∫ t

0

Qr(s)ds. (6)
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Fig. 2. Infinitely Divisible Cascading. For the Infinitely Di-
visible Cascade the geometry is random, stationary in time
and continuous in scale in the time-scale half-plane.

We establish sufficient conditions for convergence of an IDC
in L2 in [11].

Noting that the processA is non-decreasing, one can ob-
tain a random walk with multifractal properties; following
an idea which goes back to Mandelbrot [6] we define an in-
finitely divisible random walkVH as follows:
Definition 3. Let A be an infinitely divisible cascading mo-
tion, andBH the fractional Brownian motion with Hurst pa-
rameterH. The process

VH(t) = BH(A(t)), t ∈ R+, (7)

is called anInfinitely Divisible Cascading random walk(IDC
random walk).

4. SCALE INVARIANT IDC

Of special interest is the scale invariant case. Exact power law
behavior for the moments ofQr is recovered for the choice of
the scale invariant control measuredm(t, r) = cdrdt/r2:

IE[Qq
r(t)] = rcϕ(q) (8)

We study the scaling of moments of scale invariant IDC and
establish (see [11]):
Theorem. Let A(t) be an IDC-motion with control measure
dm(t, r) = cdrdt/r2.

Then, under some technical assumptions, there exist con-
stantsCq, Cq andC

′
q, C ′q such that

Cqt
q+cϕ(q) ≤ IEA(t)q ≤ Cqt

q+cϕ(q). (9)

C ′qt
qH+cϕ(qH) ≤ IE|VH(t)|q ≤ C

′
qt

qH+cϕ(qH). (10)

We point out thatA(t) andVH(t) exhibit veryrich scaling
propertiesthat can be observedover a continuous range of
scales. Moreover, they possessstationary incrementsso that
one get immediately from (9) and (10):

IEδτAq ∼ τ q+cϕ(q)

IE|δτVH |q ∼ τ qH+cϕ(qH) (11)

whereδτX(t) = X(t + τ)−X(t).
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Fig. 3. Sample of a realization ofQr(t) (left), A(t) (middle) andVH(t) (right).

5. APPLICATION: THE LOG-POISSON MODEL OF
TURBULENCE

Noting that the Poisson law is infinitely divisible, the scale
invariant Poisson IDC is of particular interest. This section
shows in what sense it corresponds to thescale invariant log
Poisson She-Ĺev̂equemodel in the field of turbulence [16, 17,
18]. This model received considerable attention in the physics
literature as a statistical description of turbulent flows.

More than half a century has been devoted to the quest for
a clear understanding of the statistics of fully developed tur-
bulence. Intermittency in fully developed turbulence is com-
monly characterised by departures from the results of Kolo-
mogorov’s 1941 theory [19]. The fundamental ideas underly-
ing this theory are rooted in the phenomenology of the Richard-
son’s cascade [1]. In Richardson’s cascade, energy is intro-
duced in the flow at a rateε (per unit mass) at the top of a
hierarchy of eddies of decreasing size. The energy is ‘cas-
cading’ down to smaller and smaller eddies at the same rate
ε, and is eventually entirely dissipated at the bottom of the
hierarchy, still at the rateε. Such a vision refers to self-
similarity. Indeed, Kolomogorov [19] predicted self-similar
scaling behaviors for the velocityv of the fluid of the form
IE|δvr|q ∼ rq/3, whereδvr = v(x + r)− v(x) is a (longitu-
dinal) velocity difference across a distancer. A large amount
of experimental results later showed that the velocity incre-
ments rather behave asIE|δvr|q ∼ rζ(q) with ζ(q) 6= q/3,
which is usually referred to as the intermittency phenomenon
or anomalous scaling property. In 1962, Kolmogorov [20] in-
troduced therefined similarity hypothesisthat relates this non
linear behavior of exponentsζ(q) to fluctuations of the locally
averaged dissipationεr =

∫
|x|<r

ε(x, t)dx. If scaling of the

form IEεq
r ∝ rτ(q) are assumed, therefined similarity hypoth-

esisyields behaviors of the moments of velocity increments
of the formIE|δvr|q ∝ rq/3+τ(q/3).

Back to IDC, the scaling behaviors of both processesA
andVH are completely controlled by the fluctuations of the
underlying IDC noiseQr. In parallel with the refined similar-
ity hypothesis, it becomes tempting to relateQr to the locally
averaged dissipationεr of turbulence. ThusVH appears as
the natural analog to the fluid velocityv. We now compare
an artificial IDC random walkVH built on the She-Ĺevêque
model of turbulence to an experimental velocity signalv in a

turbulent flow.
In summary, the She & Ĺevêque model can be seen as a

cascade that takes place through the existence of dissipative
structures distributed along scales according to a pure Pois-
son law and with constant energy transfer ratiow (see [13]
for more recent interpretations of this model). This leads to
a pure Poisson cascading process for the viscous dissipation
εr. A corresponding IDC noiseQr can be built as follows.
In this case, the continuous random measureM reduces to
a point measureM(Cr(t)) = #(Cr(t)) · ln w: the number
of points#(Cr(t)) falling into the regionCr(t) is a random
Poisson variable with meanm(Cr(t)) and each point has the
same weightln w. From (4), it results that the cascade is at
each instantt the product of a random number#(Cr(t)) of
multipliers that are all equal tow. The resulting pure Poisson
cascading noise reads as

Qr(t) = exp [(1− w)m(Cr(t))] · w#(Cr(t)), (12)

The choicedm(t, r) = cdrdt/r2 ensures that the scaling is
in terms of power laws (see (8)). Clearly, the processQr

spots log-Poisson marginal distributions. We emphasize the
fact that the whole randomness of this cascade stems from the
random Poisson number of multipliers that are all equal tow.

The IDC motionA as well as the IDC random walkV1/3

can be defined fromQr using the fractional Brownian motion
with Hurst parameterH = 1/3:

V1/3(t) = B1/3(A(t)). (13)

The scaling properties of processesQr, A andV1/3 are
controlled by the choice ofw which enters viaϕ(q) = 1 −
wq − q(1 − w) into the formerly obtained scaling laws for
r, τ ≤ 1 (see (5) & (11)):





IE Qq
r = rc[−q(1−w)+1−wq ]

IE δτAq ∼ τ (1−c+cw)q+c[1−wq ]

IE |δτV1/3|q ∼ τ (1−c+cw)q/3+c[1−wq/3]

(14)

The She-Ĺevêque model is exactly recovered forc = 2 and
w = 2/3. Forr, τ ≤ 1:

{
IEεq

r ≡ IEQq
r ∼ r−

2
3 q+2(1−( 2

3 )
q),

IE|δvr|q ≡ IE|δτV1/3|q ∼ τ
1
9 q+2

(
1−( 2

3 )
q/3

)
.

(15)
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Fig. 4. Comparison between an IDC random walk following She-Lévêque model and an experimental signal (Modane,Re ∼
2500): samples of velocity signals (left), power density spectra (middle), relative scaling exponents (right).

Figure 4 shows comparative results obtained from this IDC
and from experiment (Modane, courtesy of Y. Gagne [21]).
Signals look very similar. Moreover, the IDC random walk
V1/3 shares many properties of the observed signal. We em-
phasize thatV1/3 has stationary increments and exhibits non
trivial scaling laws obtained over a continuous range of scales.

To ensure the convergence of processA(t) in L2, the nec-
essary conditionIEA2(t) < ∞ yields (see [11]):

1− 1√
c

< w < 1 +
1√
c

(16)

If this condition is not obeyed, the cascade either collapses
to zero, or explodes to infinity in theL2 sense. For instance,
when c = 2 andw = 2/3 ∈ [1 − 1/

√
2, 1 + 1/

√
2], our

Poisson cascading noise provides a mathematical model for
the physical She-Ĺevêque model of turbulence.

MATLAB routines are available from our WEB pages.
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tences en turbulence., Ph.D. thesis, E.N.S. Lyon, 2001.

[14] P. Chainais, P. Abry, and J.F. Pinton, “Intermittency and
coherent structures in a turbulent flow: a wavelet analy-
sis of joint pressure and velocity measurements,”Phys.
Fluids, vol. 11, no. 11, pp. 3524–3539, 1999.

[15] D. Veitch, P. Abry, P. Flandrin, and P. Chainais, “In-
finitely divisible cascade analysis of network traffic
data,” Proc. ICASSP 2000 conference, 2000.

[16] Z. S. She and E. Lev̂eque, “Universal scaling laws in
fully developed turbulence,”Physical Review Letters,
vol. 72, no. 3, pp. 336–339, jan 1994.

[17] B. Dubrulle, “Intermittency in fully developed turbu-
lence: log-Poisson statistics and scale invariance,”Phys.
Rev. Lett., vol. 73, pp. 969, 1994.

[18] Z. S. She and E. C. Waymire, “Quantized energy cas-
cade and log-Poisson statistics in fully developed tur-
bulence,” Physical Review Letters, vol. 74, no. 2, pp.
262–265, 1995.



[19] A. N. Kolmogorov, “a) dissipation of energy in the lo-
cally isotropic turbulence. b) the local structure of tur-
bulence in incompressible viscous fluid for very large
reynolds number. c) on degeneration of isotropic turbu-
lence in an incompressible viscous liquid.,” inTurbu-
lence, Classic papers on statistical theory, S.K. Fried-
lander and L. Topper, Eds. 1941, pp. 151–161, Inter-
science publishers.

[20] A. N. Kolmogorov, “A refinement hypothesis concern-
ing the local structure of turbulence in a viscous incom-
pressible fluid at high reynolds number,”J. of Fluid
Mech., vol. 13, pp. 82–85, 1962.

[21] Y. Malécot, Intermittence en turbulence 3D : statis-
tiques de la vitesse et de la vorticité, Thèse de doctorat,
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