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ABSTRACT where H is the Hurst parameter. To provide processes with
o . . more realistic scaling which are able to match real world data,
Multiplicative processes and multifractals proved useful in tjplicative cascades and the framework of multifractal anal-
various applications ranging from hydrodynamic turbulence ysis were introduced, allowing a non-linear dependence on
to computer network traffic. It was recently shown and ex- i orderg of exponents (q) # ¢H in (1) so that:
plained how and why multifractal analysis could be fruitfully

placed in the general framework of infinitely divisible cas- E|6, X (1)|7 = ¢, - |T\<(Q). 2)
cades. The aim of this contribution is to design processes,

called Infinitely Divisible Cascading (IDC) noise, motion, and The synthesis of processes that possess a priori prescribed
random walk. These processes possess at the same time starultiscaling properties as well as other casual characteristics
tionary increments as well as multifractal and more general such as second-order stationarity of the increments or a con-
infinitely divisible scaling that can be prescribed a priori over tinuous rather than discrete scaling region proved extremely
a continuous range of scales. This communication focuses ordifficult. Partial solutions have been provided by several au-
the specific scale invariant case. To illustrate the powerful- thors [7, 8, 9, 10]. This is a contribution to the pavement of
ness of the method, we mention that IDC processes can exthis difficult path [11]. This paper sets off to construct new
actly mimic the scaling behaviors predicted by the celebratedprocesses called Infinitely Divisible Cascading noise, motion,
She-Lléveque model of turbulencéM ATLAB routines imple-  and random walk with flexible and natural scaling proper-
menting those processes are available from our Web pages. ties. The progression of moments may depend in a non linear
way on the ordey, and can be determined between arbitrary
scales. Moreover, it may depend in an arbitrary way on scale,
not necessarily in form of a power law. To this purpose, one

can place multifractal analysis in the more general framework

Scale invariance and related phenomena have received coryt infinjtely divisible cascades (IDC) [12, 13] characterized
siderable attention in the past from the point of view of both by:

a_nalysis and modelling. Variou_s_ kinds of scaling for_m an ln IE|6, X ()| = ¢q exp[—H(q) - n(7)). (3)

disputable component of empirical data observed in a wide

variety of applications ranging from natural phenomena (hy- Note how the framework of LIDC encompasses scaling in the

drodynamic turbulence [1], biology and body rhythms [2]...) form of power laws by setting(7) = —log(7). The ex-

to purely human phenomena created by mankind’s activitiestra degree of freedom in scale dependence was found highly

(computer networks [3, 4], financial markets [5, 6]...). Of- useful for the analysis and modelling of empirical data in tur-

ten, the presence of scaling in the data can be tied to cruciabulence [14] and computer network traffic [15]. For sake of

properties of the system, e.g., high volatility in markets and simplicity, this paper focuses on the scale invariant case only.

large waiting queues in computer networks.

Most prominently, self-similar processes have been fa- 2. INFINITELY DIVISIBLE CASCADING NOISE

vored as models for scale invariance for their simplicity. In-

deed, any self-similar proce&s(t) with stationary increments  We introduce through the following notion a generalization

spots an appealing and simple scale invarianced LEt(t) = of iterative multiplication. The following Infinitely Divisible

X(t +7) — X (t) denote its increments over a lagthen Cascading noise can be seen as a generalization of the "prod-
uct of pulses” by Barral & Mandelbrot [8] using ideas due to

E[5, X ()4 = ¢, - |7|97, (1) Schmitt & Marsan [10].

1. MOTIVATION



c.

Fig. 1. Binomial multiplicative cascade. The construction  Fig. 2. Infinitely Divisible Cascading. For the Infinitely Di-

of the Binomial cascade follows a rigid dyadic, deterministic visible Cascade the geometry is random, stationary in time
geometry; the density is an iterative product of pulses locatedand continuous in scale in the time-scale half-plane.

in the time-scale half-plane & /2", 2™).

We establish sufficient conditions for convergence of an IDC
Definition 1. LetG be an infinitely divisible distribution with ~ in £, in [11].

moment generating functiaf(q) = e~*(@. Letdm(t,r) = Noting that the procesd is non-decreasing, one can ob-
g(r)dtdr a positive measure on the time-scale half-pl&e:= tain a random walk with multifractal properties; following
R x R*. This choice of a time-invariargontrol measuren an idea which goes back to Mandelbrot [6] we define an in-

will ensure stationarity. To provide scale dependence, a so-finitely divisible random walk/;; as follows:

calledcone of influencé,.(¢) is defined for every € R, such Definition 3. Let A be an infinitely divisible cascading mo-

thatC,.(t) = {(t',r") :r <7v' < 1L, t —1' /2 <t <t +1"/2} tion, and By the fractional Brownian motion with Hurst pa-

(see Figure 2). rameterH. The process

An Infinitely Divisible Cascading noisgDC-noise) is a fam- Vir(£) = B (At ¢ +

. ! = , teRT, 7

ily of processes),.(t) parametrized by of the form u(t) m(A() )
exp [M(C,(1))]

Elexp M (C(t))]

Here, the time-scale half-plarie* is endowed with the in- 4. SCALE INVARIANT IDC

finitely divisible, independently scattered random meagiire

distributed byG and associated to its so-called control mea- Of special interest is the scale invariant case. Exact power law
suredm(t,r). This measuré/ imprints scaling structure as  behavior for the moments @}, is recovered for the choice of

is called aninfinitely Divisible Cascading random wa{kDC
(4) random walk).

QT'(t) =

well as marginal distributions on the cascade. the scale invariant control measube:(t,r) = cdrdt/r?:
The IDC-noise can be recognized as a "continuously iter- E[Q4(t)] = ro#(@ @)
ative” multiplication (compare Figure 1 and Figure 2). One "
major property of infinitely divisible cascading noises is: We study the scaling of moments of scale invariant IDC and
establish (see [11]):
E[Q] = exp[—»(q) m(Cr)} () Theorem. Let A(t) be an IDC-motion with control measure
whereo(q) = p(q) — ap(1) andm(C,) = [f, gr)drdt. ~ dm{t,r) = cdrdt/r®. | | |
Note the similarity between (5) and (3) ThEn, under sgne technical assumptions, there exist con-
stantsCy, C, andC, C/, such that
3. INFINITELY DIVISIBLE CASCADING MOTION thq+c4p(q) <TEA(t) < a]tq*c“"(q). (9)

AND RANDOM WALK
Q;tqH+cs0(qH) < E[Vy(t))7 < 5;tqH+ccp(qH)_ (10)

We point out thatd (¢) andVy (¢) exhibit veryrich scaling
propertiesthat can be observeaver a continuous range of
scales Moreover, they possessationary incrementso that
one get immediately from (9) and (10):

Where there is noise, there must be motion. Analogous to

the theory of T-Martingales and of multiplicative cascades in

general we will be interested in the distributional convergence

of Q... To this end we define:

Definition 2. AnInfinitely Divisible Cascading motio(iIDC-

motion) A(t) is the limiting integral of an IDC-nois€),.(t): E6, A ~  gateeld)
E|6, Vy|? ~ raHteelat)

~ lim / Qu(s ©)  wheres, X(£) = X(t +7) — X(1).

(11)
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Fig. 3. Sample of a realization @,.(¢) (left), A(¢) (middle) andVy (¢) (right).

5. APPLICATION: THE LOG-POISSON MODEL OF turbulent flow.

TURBULENCE In summary, the She & &veque model can be seen as a
cascade that takes place through the existence of dissipative
structures distributed along scales according to a pure Pois-
son law and with constant energy transfer ratidsee [13]
for more recent interpretations of this model). This leads to
a pure Poisson cascading process for the viscous dissipation

Noting that the Poisson law is infinitely divisible, the scale
invariant Poisson IDC is of particular interest. This section
shows in what sense it corresponds to sbele invariant log
Poisson She-&&quemodel in the field of turbulence [16, 17,

1.8]' This model re_ce_lved Cons!de_rable attentionin the physmsgr_ A corresponding IDC nois€),. can be built as follows.

literature as a statistical description of turbulent flows. In this case, the continuous random measufereduces to
More than half a century has been devoted to the quest for, point measuré (C,.(t)) = #(Co(t)) - Inw: the number

a clear understanding of the statistics of fully developed tur- ¢ points #(C,.(t)) falling into the regionC, () is a random

bulence. Intermittency in fully developed turbulence is com- pgisson variable with mean(C, (t)) and each point has the

monly characterised by departures from the results of Kolo- ¢4 me weightnw. From (4), it results that the cascade is at

mogorov’'s 1941 theory [19]. The fundamental ideas underly- o5ch instant the product of a random numbe#(C,(t)) of

ing this theory are rooted in the phenomenology of the Richardy, tipjiers that are all equal ta. The resulting pure Poisson
son’s cascade [1]. In Richardson’s cascade, energy is i”tro'cascading noise reads as

duced in the flow at a rate (per unit mass) at the top of a

hierarchy of eddies of decreasing size. The energy is ‘cas- Qr(t) = exp [(1 — w)m(C,(t))] - w? ) (12)
cading’ down to smaller and smaller eddies at the same rate

e, and is eventually entirely dissipated at the bottom of the The choicedm(t,r) = cdrdt/r* ensures that the scaling is
hierarchy, still at the rate. Such a vision refers to self- in terms of power laws (see (8)). Clearly, the process
similarity. Indeed, Kolomogorov [19] predicted self-similar Spots log-Poisson marginal distributions. We emphasize the
scaling behaviors for the velocity of the fluid of the form fact that the whole randomness of this cascade stems from the
IE|0v,.|? ~ r9/3, wheredv, = v(x + 1) — v(z) is a (longitu- random Poisson number of multipliers that are all equat.to
dinal) velocity difference across a distanceA large amount The IDC motionA as well as the IDC random walk; /3

of experimental results later showed that the velocity incre- can be defined fror),. using the fractional Brownian motion
ments rather behave @|6v, |7 ~ r<@ with ((q) # q/3. with Hurst parametef! = 1/3:

which is usually referred to as the intermittency phenomenon

or anomalous scaling property. In 1962, Kolmogorov [20] in- Viys(t) = Biys(A(1)).
troduced theefined similarity hypothesibat relates this non
linear behayior of (_axponendjséq) to fluctuations othe locally controlled by the choice o which enters viap(q) = 1 —
averaged dissipation. = [, e(x,t)dx. If scaling of the 4 _ q(1 — w) into the formerly obtained scaling laws for
form IEc? oc 77(@) are assumed, threfined similarity hypoth- . 7 < 1 (see (5) & (11)):

esisyields behaviors of the moments of velocity increments

(13)

The scaling properties of process@s, A andV;,; are

of the formIE|duv,.|¢ o r4/3+7(a/3), IE Q1 = polramw)ti-w]
Back to IDC, the scaling behaviors of both procesdes IE 6, A% ~  glmetew)atell—w] ; (14)
and Vy are completely controlled by the fluctuations of the IE (6, V)37 ~ sl-etew)a/stel—wt™]

underlying IDC noisé),.. In parallel with the refined similar- o ]

ity hypothesis, it becomes tempting to relgtgto the locally ~ 1he She-leveque model is exactly recovered for= 2 and
averaged dissipation, of turbulence. Thud/y appears as "~ 2/3. Forr, 7 < 1:

the natural analog to the fluid velocity We now compare B 2g42(1-(2)"

an artificial IDC random wall/z; built on the She-Bvéque e = BQ7 ~orE 3q/3’ (15)
model of turbulence to an experimental velocity signai a E|dv,]9 = IE|6,V)/3]? ~ Téqﬂ(l*(%) )



SIMULATION (IDC)

t
EXPERIMENT (MODANE)

log (PSD)

- simulation

)

-=-  experiment
—— theory .
-+-  simulation

experiment

slope -5/3

[

RCEN

-

t log (frequency)

Fig. 4. Comparison between an IDC random walk following She&que model and an experimental signal (Modage~
2500): samples of velocity signals (left), power density spectra (middle), relative scaling exponents (right).

Figure 4 shows comparative results obtained from this IDC [8] J. Barral and B. Mandelbrot, “Multiplicative products

and from experiment (Modane, courtesy of Y. Gagne [21]).
Signals look very similar. Moreover, the IDC random walk

V1,3 shares many properties of the observed signal. We em-

phasize thal; /3 has stationary increments and exhibits non

trivial scaling laws obtained over a continuous range of scales. [°]

To ensure the convergence of procdss) in £», the nec-
essary conditiofEA%(t) < oo yields (see [11]):

1 1
l——<w<1l4+ —

/e /e (16)

If this condition is not obeyed, the cascade either collapses
to zero, or explodes to infinity in thé, sense. For instance,

whenc = 2 andw = 2/3 € [1 — 1/v/2,1 + 1/1/2], our

[10]

[11]

Poisson cascading noise provides a mathematical model for

the physical She-&veque model of turbulence.
MATLAB routines are available from our WEB pages.
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