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Abstract—Most existing work on multicast capacity of large
homogeneous networks is based on a simple model for wireless
channel, namely the Protocol Model [12], [19], [22]. In this paper,
we exploit a local capacity tool called arena which we introduced
recently in order to render multicast accessible to analysis also
under more realistic, and notably less pessimistic channel models.
Through the present study we find three regimes of the multicast
capacity (λm) for a homogeneous network depending on the ratio
of terminals among the nodes of the network. We note that
the upper bounds we establish under the more realistic channel
assumptions are only

√
log(n) larger than the existing bounds.

Further, we propose a multicast routing and time scheduling
scheme to achieve the computed asymptotic bound over all
channel models except the simple Protocol Model. To this end,
we employ percolation theory among other analytical tools.

Finally, we compute the multicast capacity of large mobile
wireless networks. Comparing the result to the static case reveals
that mobility increases the multicast capacity. However, the
mobility gain decreases when increasing the number of terminals
in a fixed size mobile network.

I. INTRODUCTION

There has been a growing interest to understand the funda-
mental capacity limits of wireless networks [5], [8], [9], [13],
[14], [18], [19], [25]. Results on network capacity are not
only important from a theoretical point of view but may also
inform protocol design and architecture of wireless networks.
In this paper, we study the capacity of wireless networks for
multicast applications. We focus on large homogeneous wire-
less networks which is a popular model in network capacity
papers. To set notation, we assume n nodes (n → ∞) in the
network and multiple multicast sessions where each session
has a source and k − 1 terminals. Also, we assume random
traffic among the nodes, that means the source and terminals of
each multicast session are selected uniformly random among
the nodes. For the above topology and traffic pattern, we define
the multicast capacity (λm) as the maximum rate of generation
of multicast bits such that all bits can be delivered to their
terminals successfully in a limited time, almost surely (a.s.)
as n → ∞.

Multicast capacity of planar large homogeneous networks
has been studied in several papers [12], [19], [22]. Very
recently, [19] computes asymptotic bounds on the multicast
capacity showing that λm = Θ

(
W

√
n/k log(n)

)
when

k = O(n/ log(n)), and λm = Θ(W ) when k = Ω(n/ log(n)),
where W is the wireless channel capacity; note that the latter

is asymptotically equal to the broadcast capacity [13]. Further,
[22] studies the multicast capacity for the case where the
number of sources is nε (0 < ε < 1) and the number of
terminals is n1−ε for each multicast session, then it proves that
λm = Θ

(
W

√
nε/ log(n)

)
. We point out that these papers

have used the simple Protocol Model (see Section III) for
modeling the wireless channel in their analysis. In this paper,
we study the multicast capacity using other channel models
such as the Physical Models; these more advanced models are
considered to be more realistic and accurate.

We prove that we have λm = Θ(W
√

n/k) when k =
O(n/ log(n)3) for all models found in the literature, with one
exception: for the simple Protocol Model. The reason that we
find different bounds here is that the simple Protocol Model
makes pessimistic assumptions on interference when compared
to the other channel models. A similar situation has been found
for the unicast capacity and transport capacity [5], [14].

Furthermore, we prove that for all channel models, when
k = Ω(n/ log(n)) then λm = Θ(W ). This is a generalization
to the result of previous work [19] that was proved based
on the simple Protocol Model. Note that the use of novel
techniques were required to achieve this extension. Particu-
larly, we use local capacity techniques which we introduced
very recently in [14] to provide upper bounds on the multicast
capacity; these techniques are useful in other contexts too.

As the first and the second contributions of this paper, we
provide asymptotic bounds on the multicast capacity. First,
we find two novel upper bounds on the multicast capacity.
These bounds are different than the computed bounds in
the recent papers [12], [19], [22]. Combining these bounds
provides a tight upper bound on the multicast capacity with
three asymptotic regimes in terms of k and n. Second, we
introduce some multicast routing schemes and MAC layer time
scheduling for achieving a multicast throughput within a con-
stant factor of the computed upper bounds. Interestingly, we
apply some results from percolation theory and connectivity
of large homogeneous networks to prove the achievability in
different asymptotic regimes.

As the third contribution, we study the multicast capacity
of large mobile wireless networks. We prove that multicast
capacity is Θ(Wn/k); this implies that mobility can increase
the multicast capacity by at least factor of Ω(

√
n/k). Also, it



demonstrates that the mobility gain reduces by increasing the
number of terminals in a fixed mobile network. In particular
case where k = n which represents broadcast, mobility does
not change the capacity asymptotically.

The paper is organized as follows. In Section II, we sum-
marize related work on the network capacity. We introduce
the network models and basic notations in Section III. In
Section IV and Section V, we compute novel upper bounds and
lower bounds for the multicast capacity. We compute multicast
capacity of large mobile networks in Section VI. Finally, we
conclude the paper in Section VII.

II. RELATED WORK

Gupta and Kumar [9] study the network capacity for unicast
connections in static wireless networks consisting of n nodes
distributed in a circle of area A. They define the “transport
capacity” of a wireless network with units of bit-meters per
second as the maximum rate of the packets times the distance
they travel between the source and the destination. Their main
result says that the aggregate transport capacity of unicast
connections is O(W

√
An) in an arbitrary network and it is

Θ(W
√

An/log(n)) in a large homogeneous network. As a
result, if the capacity is shared between random sources and
destinations in the network, per node capacity decreases as
O(W

√
1/n) (in homogeneous network Θ(W

√
1/n log(n)))

when n grows. The same authors also analyze three di-
mensional networks [10]. They prove that if the nodes are
distributed in a sphere with volume V then the aggregate
transport capacity is O(W 3

√
V n2) [10]. Later, these results

were generalized for a more accurate channel model in [1].
Franceschetti et al. [5] propose a constructive technique

for large homogeneous networks which achieves a per-node
capacity of Θ(W

√
1/n). This is an improvement of factor√

log(n) over earlier result of Θ(W
√

1/n log(n)) [9], [17].
The main idea of the technique is build backbone of nodes that
carry packets across the network at constant rate, using short-
hops transmissions (size of �

√
A/n), and to drain the rest of

the traffic to the backbone using a single long-hop transmission
(size of �

√
A log(n)/n). They proved the existence of such

a backbone is due to percolation theory [7].
For wireless mobile networks, Grossglauser and Tse [8]

show that per node capacity can be increased to Θ(W ) if
packet delay is left unbounded. They propose a mobility-based
routing method in which the number of retransmissions of the
unicast packets between source and destination is reduced to
two. They consider a mobility model where the nodes move
uniformly and independently within a circular area; a mobile
node close to the source receives the packet and moves in
the entire network randomly and later delivers the packet
when it is close enough to the destination. Many other efforts
demonstrate that there is a trade-off between the capacity and
the delay in wireless mobile networks, for different mobility
patterns and constraints on delay (see [23] for references).

Introducing a new direction in network capacity research,
in our pervious work, we present local-capacity concept and
find new capacity bounds based topology and traffic pattern

for unicast and multicast applications in arbitrary wireless net-
works under all classical channel models [14]. We employed
a new analytical tool called arena-rate function to bound the
capacity of wireless networks. In this paper we apply this tool
and some of analytical results of to [14] to upper bound the
multicast capacity.

It should also be mentioned that there exists work on the
broadcast capacity of wireless networks [13], [15], [24], [27].
The recent papers prove that the broadcast capacity is Θ(W ) in
“well-connected” arbitrary wireless networks [13], [15]. More
recently, some papers compute the multicast capacity and unify
the existing results on unicast and broadcast capacity [19],
[22]. We discussed about the results of there papers and the
contribution of our present work in the introduction section.

Note that all the above mentioned papers as well as this
paper assume only point-to-point coding at the receivers. If
the nodes are allowed to use sophisticated multi-user coding
then network capacity of a higher order than that described
above can be achieved [6], [11], [16], [20]. A full discussion
of these results is beyond the scope of this paper.

III. WIRELESS CHANNEL MODELS AND BASIC NOTIONS

In this section, we describe the models and notions used
in this paper. We consider a wireless network consisting of n
wireless nodes in d-dimensional space cube with volume V .

We denote the set of transmitter-receiver pairs of simul-
taneous direct transmissions active at time τ by SD :=
{(S1, D1), (S2, D2), . . . , (Su, Du)}. Also, we denote the set
of transmitters by S := {S1, . . . , Su}. Note that these sets
vary over time; if not otherwise indicated, however, we will
consider one fixed but arbitrary time instant. For simplicity
in notation, the node symbols are used also to represent their
locations. For example, |Si − Di| is the Euclidean distance
between the nodes Si and Di in Rd.

A. Wireless Channel Models

Here, we briefly review of the common channel models
found in the literature on wireless network capacity. These
models have been explained with more details in [14]. First,
the Protocol Model models a successful transmission based on
the distance with the closest interfering transmitter. This model
is the simplest of the three and easiest to analyze. Second, the
Physical Model sets a threshold on the Signal to Interference
plus Noise Ratio (SINR) of the received signal, declaring the
transmission to be successful if the SINR is larger than the
threshold. Third, the Generalized Physical Model determines
the transmission rate in terms of the SINR by using Shannon’s
capacity formula for a wireless channel with additive Gaussian
white noise [3].

1) Protocol and Physical Model: In both, the Protocol and
the Physical Model the assigned transmission rate from node
Si ∈ S to node Di is Wi = W if the transmission is
modeled as successful, and the rate is zero for unsuccessful
transmissions.

These models are different on the conditions for successful
transmission. In the literature [9], [10] one finds the following



three different versions under the term “Protocol Model”.
Given the interference parameter Δ > 0 a transmission is
modeled as successful if:

• Protocol Model 1:
|Sj − Di| ≥ (1 + Δ)|Sj − Dj| for all Sj ∈ S\{Si}.

• Protocol Model 2:
|Sj − Di| ≥ (1 + Δ)|Si − Di| for all Sj ∈ S\{Si}.

• Protocol Model 3 or “simple Protocol Model”:
|Sj − Di| ≥ (1 + Δ)r for all Sj ∈ S\{Si}, and |Si −
Di| ≤ r where the transmission range r is an additional
parameter.

Under the Physical Model a transmission is modeled as
successful if

SINRi =
PiGii

No +
∑

j �=i,j∈S
PjGji

≥ β (1)

Here, β is the SINR-threshold, No represents the ambient
noise, and Gji denotes the signal loss, meaning that PjGji

is the receiving power at node Di from transmitter Sj . We
assume a low power decay for the signal loss of the form
Gji = |Sj −Di|−α, where α > d is the signal loss exponent.

2) Generalized Physical Model: In this model all node
pairs are able to communicate by direct transmission, however
with a rate Wi that depends on SINR as

Wi = W · log2(1 + SINRi) (2)

While this model assigns a more realistic transmission rate at
large distance than the other two channel models, it also results
in a singularity under the signal loss model Gii = |Si−Di|−α:
according to (2) the receiving power and the rate are amplified
to unrealistic levels if transmitter and receiver are placed
very closely to each other. The singularity can be easily
addressed by bounding the received power at each node [2],
[4]. Additionally, we assume that the maximum transmission
power (P ) is bounded. Therefore, we have W i = O(W ).
Note that limiting the maximum transmission power is an
important assumption here, it has been shown that a significant
transmission power (compare to the network size) can change
the asymptotic bounds on network capacity [15].

B. Local Capacity Tools

Here, we review local capacity tools which have been
developed in [14]. A transmission arena (A i) is a shape that
is defined based on location of the transmitter (S i) and the
receiver (Di) for every transmission in the network. In this
paper, we define Ai = {X : |Si − X | ≤ |Si − Di|} (a
circular area around the transmitter with radius of |S i − Di|)
as transmission arena. It has been proved in [14] that for any
arbitrary point X in the space, at any time instance τ , and for
any set of simultaneous transmitters S,∑

Si∈S
Wi · IAi(X) ≤ MW (3)

where M is called arena-bound and IAi(X) is an indicator
showing whether point X is located inside Ai or not. We call
equation (3) the local capacity constraint at point X .

The value of M can be computed in terms of channel model
parameters as given in Lemma 1 (the proof in [14]). Clearly,
M = Θ(1) for Protocol Models and Physical Model.

Lemma 1: The arena-bounds (M ) can be chosen for differ-
ent channel models as

M =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 for Δ > 2, any Protocol Model,

	 (4+2Δ)d

Δ2d − 1
 for Δ ≤ 2, Protocol Models 1, 2,

	 (2+Δ)d

Δd − 1
 for Δ ≤ 2, Protocol Model 3,⌈
3αPmax
βPmin

⌉
for Physical Model.

(4)
Here, Pmax and Pmin are the maximum and minimum trans-
mission power of the nodes.

It has been shown in [14] that M = O(log(n)) for
Generalized Physical Model. However, as we will explain later,
for a particular case that we apply (3), M = Θ(1).

Also, [14] defines filled volume space for every transported
bit b in the wireless network as

σb =
∑
i∈Hb

∫
x∈cube

Ai(X)dX (5)

where Hb is the set of transmissions used for transmitting the
the bit b.

Lemma 2 provides a capacity bound based on the filled vol-
ume of space for transporting the bits of a particular multicast
application app. The proof can be found in Theorem 6 of [14].

Lemma 2: Assume that sapp ≤ (
∑

bj
σbj )/(

∑
bj

1) as T →
∞ where {bk}k are the transported bits under application
app in time interval [0, T ]. Then the rate of generation
of successfully transported bits of the application (λapp) is
bounded as

λapp ≤ MW · V/sapp (6)

C. Transport Capacity

The transport capacity is useful to analyze network capacity
for a given set of unicast source-destination pairs AB :=
{(A1, B1), ..., (Au, Bu)}. It can be defined as [9]:

CT (AB) := max
multi-hop paths

∑
j

|Aj − Bj |Rj (7)

where Rj is the average rate of unicast connection between of
Aj and Bj over a given multi-hop path. The maximum is taken
over all possible multi-hop routes establishing the required
connections between the sources and destinations. The bounds
on transport capacity are presented in [1], [9], [10], [14].

IV. UPPER BOUNDS ON THE MULTICAST CAPACITY

In this section, we find novel upper bounds on the multicast
capacity. We drive two theorems. The first theorem takes into
account the homogeneity of network topology for computing
the upper bound. The second theorem uses the randomness
property of the topology to provide a new capacity bound.



Fig. 1. Grouping the terminals of a multicast session by considering the last
node (T ′

i ) which transmits the packet inside the small ball around a terminal

(Ti). In the left figure Ti ∈ I(u)
1 and in the right figure Ti ∈ I(u)

2 .

A. Upper-bound based on Homogeneity of the Topology

Here, we explain how to upper bound the multicast capacity
when the network has some homogeneity on the distribution of
nodes in the space. Consequently, the results of this subsection
are applied also for wireless network with grid topology in d-
dimensional space.

Theorem 1: Assume a homogeneous wireless network in d-
dimensional space. Then, for all channel models

λm = O

(
d

√
(
n

k
)d−1W

)
(8)

almost surely for large n.

Proof of Theorem 1: Without lack of generality, assume that
k → ∞ as n → ∞. Consider an arbitrary multicast session u
with set of terminals T (u) in the network. We define I (u) ⊂
T (u) as the set of terminals such that they are apart from the

rest of terminals by distance of d

√
V
k .

I(u)=

{
Ti ∈ T (u)s.t.∀Tj ∈ T (u)\ {Ti}: |Tj − Ti| ≥ d

√
V

k

}

Since the set of terminals for the multicast session u have
been chosen uniformly random, using Lemma 2 of [15], we
can show that #I(u) ≥ c1 · k with high probability (w.h.p.),
where c1 = exp(−πd)/2 is a constant and πd is the volume
of unit d dimensional sphere. This property results from the
homogeneity of the topology.

Next, we draw two balls around each node T i ∈ I(u) with

radiuses of 1
4

d

√
V
k and 1

2
d

√
V
k . Also, for every node Ti ∈ I(u),

we consider the last node (T ′
i ) that forwards the multicast

packet inside the small ball (with radius of 1
4

d

√
V
k ) around Ti.

Then, we partition I (u) into two subsets:

I(u)
1 =

{
Ti ∈ I(u): |Ti − T ′

i | ≤
1
2

d

√
V

k

}
(9)

I(u)
2 = I(u) \ I(u)

1 (10)

Now, we take average (i.e. expectation) over the size of these
sets for the transported multicast bits in a long period of time
in different multicast sessions. We analyze these two cases
separately: (i) if E[#I (u)

1 ] ≥ E[#I(u)]/2 (ii) if E[#I(u)
2 ] ≥

E[#I(u)]/2.

Case (i): For every multicast session u, we consider the
set of transmissions which transport the packet from T ′

i to
Ti for all Ti ∈ I(u)

1 . From the definition of I (u), the large

balls (with radius of 1
2

d

√
V
k ) are disjoint in the space; hence,

the transmissions are distinct for every Ti ∈ I(u)
1 . These

transmissions transport the packet for distance of at least

|T ′
i − Ti| ≥ 1

4
d

√
V
k inside each large ball. Now, we apply the

existing bounds on the transport capacity of wireless networks
for the described transmissions [1], [9], [10], [14]. Then,

λm · E[#I(u)
1 ] · 1

4
d

√
V

k
≤ c2W

d
√

V nd−1 (11)

where c2 is a constant given in the literature. Thus,

λm ≤ c2W
d
√

V nd−1/(E[#I(u)
1 ]

1
4

d

√
V

k
)

≤ 4c2W
d
√

knd−1/(E[#I(u)]/2)
a.s.
≤ 4c2W

d
√

knd−1/(c1k/2)

=
8c2

c1
W d

√
(
n

k
)d−1

Case (ii): For every multicast session u, we consider the set
of transmissions by T ′

i for all Ti ∈ I2. A simple geometric
computation shows that at least π ′

d
1
2d

V
k of the large ball around

Ti is covered by the transmission of T ′
i where π′

d is a constant
(e.g. π′

d = π/12 in 2-dimensional space). Since, the large
balls are disjoint, it follows that the “filled volume of space”
that is used for transporting the bits of session u is at least
π′

d
1
2d

V
k · #I(u)

2 . Now, we apply Lemma 2 for the transported
multicast packets. Then,

λm · E[#I(u)
2 ] · π′

d

1
2d

V

k
≤ MW · V (12)

Thus,

λm ≤ MWV/(E[#I(u)
2 ]π′

d

1
2d

V

k
)

≤ 2d

π′
d

MWk/(E[#I(u)]/2)

a.s.
≤ 2d

π′
d

MWk/(c1k/2)

=
2d+1

c1π′
d

MW

As we explained in Section III-B, M = O(1) for all three
Protocol Models and Physical Model.

Since, one of two above cases has to occur, we conclude
that λm = O

(
W d

√
(n

k )d−1
)

Note that for the Generalized Physical Model M =
O(log(n)). Therefore, if we follow the proof of Theorem 1,

then gives λm = O(max{W d

√
(n

k )d−1, W log(n)}). Anyway,
this does not change the final upper bound that we provide at
the end of this section in (17).



B. Upper-bound based on Randomness in the Topology

Here, we compute a new upper bound on the multicast
capacity. Theorem 2 uses the randomness of the location of the
nodes in order to bound the multicast capacity. Randomness of
topology creates some clusters of nodes which are relatively
isolated from the rest of the nodes. These clusters can at as
bottleneck on the multicast capacity.

Theorem 2: Assume a homogeneous wireless network in d-
dimensional space. Then, for all channel models

λm =

{
O

(
n

k log(n)W
)

if k ≤ n
log(n)

O (W ) if k ≥ n
log(n)

(13)

almost surely for large n.

Proof of Theorem 2: The idea of the proof is to show that
there exists a cluster of nodes in a random topology which is
relatively isolated from the rest of the nodes and the average
rate of information that can be sent/received by the nodes of
this cluster is very limited compare to size of cluster. This
method gives us a new bound on the multicast capacity.

For the proof, we divide V into cube cells with side size of
1
3

d

√
V log(n)

n . Now, consider a fixed arbitrary cell. Denote the
number of nodes in the cell by η. Let p1 = P[η = 0], then as
n → ∞,

p1 =
(

1 − 1
3d

V log(n)
n

/V

)n

=
(

1 − 3−d log(n)
n

)n

� e−3−d log(n)

= n−3−d

Also, let p2 = P[η < (1 − δ)3−d log(n)] where 0 < δ < 1
is an arbitrary constant number. We can find an upper bound
on p2 by applying the Chernoff’s bound.

p2 ≤ e−δ23−d log(n)/2 = n−δ23−d/2 (14)

Next, we analyze event B which is the event that there exists
a group of 3d neighbor cells, such that the middle cell contains
at least (1− δ) log(n) nodes and the 3d −1 cells around it are
empty.

P[B] = 1 −
(
1 − (1 − p2)p3d−1

1

) n
log(n)

≥ 1 −
(
1 − (1 − n−δ23−d/2)n−3−d(3d−1)

) n
log(n)

� 1 −
(
1 − n−1+3−d

) n
log(n)

� 1

So, such 3d neighbor cells in the network can be found w.h.p..
Note that we can even make a stronger argument and using
Borel-Cantelly lemma [21] prove that event B occurs almost
surely for large n.

Fig. 2. A cluster of nodes in a large homogeneous network which is relatively
isolated from the rest of the nodes.

Let p3 be the probability that at least one node in the middle
cell is source or terminal of a multicast session. It is easy to
show that

1−
(

1 − (1 − δ)3−d log(n)
n

)k

≤ p3 ≤1−
(

1 − e3−d log(n)
n

)k

(15)
where these bounds are obtained using (1 − δ)3−d log(n) ≤
η ≤ 3−de log(n) w.h.p.. The latter upper bound on η has been
proved in Claim 3.1 of [17].

We note that in (15) if k = O( n
log(n) ) then p3 = Θ( log(n)k

n )
and if k = Ω( n

log(n) ) then p3 = Θ(1).
Now, we consider 3d−1 points which are the centers of the

empty cells. When a transmission between the nodes of middle
cell and the rest of the nodes occurs, at least 1 of these points
are contained inside the arena of that transmission. Next, we
apply the local capacity constraint (3) for these 3d − 1 points
to bound input/ouput rate of the cluster, then we find

λm · p3 ≤ (3d − 1) · MW (16)

This completes the proof when M = Θ(1) which the case for
Protocol and Physical models. For Generalized Physical Model
we prove in the appendix that M = Θ(1) for the particular
case that is studied here.

C. Upper-bound Regimes for Multicast Capacity

Here we combine the results of last two theorems. We
find the following upper bound on the multicast capacity for
all channel models. Note that for d ≥ 2 dimensional space,
multicast capacity has three regimes in terms of k. For d = 1
we simply have multicast capacity equal to broadcast capacity
asymptotically (Θ(W )).

λm =

⎧⎪⎨
⎪⎩

O( d

√
(n

k )d−1W ) if k ≤ n
log(n)d

O( n
k log(n)W ) if n

log(n)d ≤ k ≤ n
log(n)

O(W ) if k ≥ n
log(n)

(17)

Fig. 3 shows the upper bound of multicast capacity in d = 2
dimensional space. Note that the previous result on multicast
capacity which has been computed for Protocol Model 3 is
smaller than our computed bound for k = O( n

log(n) ). The
difference results from channel modeling. Protocol Model 3
which somehow models the interference of wireless channel
pessimistically in comparison to other channel models. The
same issue has been found for unicast capacity and transport
capacity cases in [5], [14].



Fig. 3. Upper bound on multicast capacity in terms of k. The lower line
represents multicast capacity for Protocol Model 3 and upper line shows the
capacity bound for other channel models.

V. LOWER BOUNDS ON THE MULTICAST CAPACITY

In this section, we introduce multicast routing and time
scheduling schemes to achieve the computed upper bounds
in the last section and also to provide novel lower bounds on
the multicast capacity. As we explained in the introduction, the
multicast capacity has been analyzed under Protocol Model 3
in [19], [22]. Here, we focus on other classical channel models
(see Section III-A).

We assume that the maximum transmission power is large
enough for creating a proper connectivity among the nodes
for the Physical Models explained in Section III-A. Otherwise,
poor connectivity of some relatively isolated single nodes can
result significant decrease on the multicast capacity and change
the asymptotic capacity bounds. The full discussion on the
relation between maximum power level and multicast capacity
is beyond the scope of this paper. This problem has been
studied explicitly for the broadcast capacity in [15].

Theorem 3 provides lower bound on the multicast capacity
of planar homogeneous networks in 4 cases. Fig. 4 depicts
the lower bound in terms of k. In case 1 and 4, the lower
bound is tight i.e. it approximates the multicast capacity up to
a constant factor. In case 2 and 3, the lower bound is different
than the computed upper bound in (17) by at most a factor of
O(

√
log(n)) which occurs for k = Θ( n

log(n)2 ).
We present Theorem 3 for d = 2 dimensional space. The

proof can be easily extended to d = 3 dimensional space.
Achievability of multicast capacity in d = 1 dimensional space
is trivially proved using the proposed broadcast schemes of
[13], [15].

For the proof of Theorem 3, we construct specific cellular
structures and then we review some results from existing work
which reveal connectivity properties of these structures. We
build three cellular structures by dividing the square area V

into smaller squares with side size of c
√

V
n , c

√
V log(n)

n ,

c log(n)
√

V
n , and we call them “cells”, “large-cells”, and

“super-cells” respectively. Parameter c is a constant, here, we

Fig. 4. Lower bound on multicast capacity in terms of k. The lower line
represents multicast capacity for Protocol Model 3 and upper line shows the
capacity bound for other channel models.

set c = 10 which is large enough to hold the connectivity
properties of cellular structures needed for our routing scheme.
We call two non-empty squares (containing at least one node)
in these cellular structures adjacent if they have a common
side, i.e. every internal square has 4 neighbors.

Next, in Lemma 3 and 4, we explain two connectivity
characteristics of these structures using the existing results on
percolation theory and connectivity of large homogeneous net-
works. The proofs of these lemmas can be found in Theorem 3
of [5] and Claim 3.1 of [17] respectively.

Lemma 3: Consider an any arbitrary c log(n)
√

V
n by

√
V

rectangular area of the cells. Then, for any c > log(6), there
exist at least γ log(n) (γ is a constant depending on c only)
disjoint paths built by the adjacent non-empty cells between
left side and right side of the rectangle area a.s. for large n.

Now, we consider the rectangular area created by
√

n
c log(n)

super-cells which are on the same row or on the same column.
From Lemma 3 it follows that there are γ log(n) disjoint
paths which pass through all super-cells that are located on
the same row or same column. We call the disjoint paths
which connect the super-cells on the same column “vertical
highways” and those which connect the super-cells on the
same row “horizontal highways”. Note that if a vertical and a
horizontal highway pass through the same super-cell then they
intersect at least in one cell. Intuitively, vertical and horizontal
highways connect the super-cells to each other like a grid;
there are at least γ log(n) highways that connect every two
adjacent super-cells.

We note that the distance between two nodes which are
located inside two adjacent cells on a highway is less than√

5c
√

V
n . So, we can transport the packets can on the high-

ways by setting the transmission range is rs =
√

5c
√

V
n . We

call these transmissions “short-hop” transmissions.

Lemma 4: For any c >
√

3 the number of nodes at each



large-cell is between 1 and c2e log(n) a.s. for large n.

Based on Lemma 4, every large-cell contains at least one
node a.s.. Therefore, the packets can be transported through
adjacent large-cells in the network. We only need to set the

transmission range rl =
√

5c
√

V log(n)
n for transmitting the

packet between adjacent large-cells. We call the transmissions
with range of rl “long-hop” transmissions.

In Theorem 3 we apply the connectivity properties of the
described cellular structures and propose routing and time
scheduling schemes to provide novel lower bounds on the
multicast capacity.

Theorem 3: Assume a homogeneous wireless network in 2-
dimensional space. Then for all channel models except the
simple Protocol Model

λm =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ω
(√

n
k W

)
if k ≤ n

log(n)3

Ω( n

k
√

log(n)3
W ) if n

log(n)3 ≤ k ≤ n
log(n)2

Ω(
√

n
k log(n)W ) if n

log(n)2 ≤ k ≤ n
log(n)

Ω (W ) if k ≥ n
log(n)

(18)

almost surely for large n.

Proof of Theorem 3: We provide multicast scheme and prove
achievability for each case separately.

Case 1: We explain this case in three steps.
Step 1 (Multicast Routing): The main idea of the routing

algorithm is to route a multicast packet along highways (in
short-hops) from the super-cell of the source to the super-
cells of the terminals. Then, drain the packet from highways
toward the terminals by long-hop transmissions (see Fig. 5).
The routing scheme has three phases.

Phase (i): The packet is transported horizontally in long-
hops from the source to all vertical highways which pass
through the super-cell of the source. Note that at most√

log(n) long-hop transmission will be needed in this phase.
We choose one of the vertical highways randomly to transport
the packet for phase (ii).

Phase (ii): We use a routing scheme similar to the proposed
scheme in [22] for transporting the packet on the highways
from the super-cell of the source to the super-cells of the
terminals.

First, the packet is transported on the chosen vertical
highway in phase (i) to all super-cells which are on the same
column with the super-cell of the source. Second, a random
number θ between 1 and 

√
k� is chosen for that packet, and

the packet is transported on a horizontal highway to a row
of super-cells if the row number is q · 	

√
n

c log(n)
/
√

k� + θ

(the number of super-cells on the same row is
√

n
c log(n) ) where

q = 1, 2, . . . , 	
√

k
. Third, the packet is transported on a ver-
tical highway from the closest row of super-cells which haver
received the packet toward the super-cell of each terminal.

Phase (iii): For the super-cell of each terminal, the packet
is transposed horizontally in long-hops along adjacent large-
cells from the vertical highway which carries the packet to the
terminal.

Fig. 5. The multicast packet is transported in short-hops along highways
from super-cell of the source to super-cells of terminals. Then, long-hop
transmissions are used to drain the packet from highway to each terminal.

Step 2 (Time-scheduling): We divide each unit time interval
into two equal time slots which are used later respectively for
short-hop and long-hop transmissions. At each time slot, we
schedule the short-hop and long-hop transmissions based on a
well-known cellular structure time scheduling technique that
has been proposed in [5], [14], [17].

This scheduling technique colors the squares of the cellular
structure with finite number of colors, such that every two
squares with the same color are farther than a certain distance
from each other. Then, it divides the time slide into equal sub-
slides where every sub-slide corresponds to one color. Then, it
allows the nodes inside squares with the same color transmit
simultaneously. The distance between the cells with the same
color is large enough so that the interference does not cause
any unsuccessful transmission.

The technique guarantees that if transmission power is large
enough and α > d, then it can provide input/output rate of
Θ(W ) for each square of the given cellular structure.

Step 3 (Proof of achievability): We assume that the multicast
bits are generated at rate λ′

m in the network. Next, we compute
the average workload that our multicast scheme creates on
each cell or large-cell in terms of λ′

m. This gives us the
maximum rate of multicast bits that can be delivered in the
network successfully under our scheme. Note that the network
traffic pattern is symmetrical, therefore the workload is equal
(up to a constant factor) over all parts of the network.

First, we analyze the traffic load on the highways. Ev-
ery multicast packet is repeated in short-hops along high-
ways Θ

(√
k ·

√
n

c log(n) · log(n) + k ·
√

n

c log(n)
√

k
· log(n)

)
=

Θ(
√

nk) times a.s.. So, the average workload on each cell

on the highway is Θ
(
λ′

m

√
nk/(γn)

)
= Θ(λ′

m

√
n
k ). Since,



the time scheduling provides Θ(W ) for each cell, λ ′
m =

O(W
√

n
k ) is the maximum rate of generation of multicast

bits that can be loaded the highways.
Second, we analyze the draining traffic on large-cells. From

Lemma 4, the number of terminals in each large-cell in at most
c2e log(n). Therefore, the maximum workload on a large-cell

is Θ
(
λ′

m · k
n · c2e log(n) ·

√
log(n)

)
= Θ

(
λ′

m
k
√

log(n)3

n

)
.

Since time scheduling provide Θ(W ) for each large-cells,
λ′

m = O(W n

k
√

log(n)3
) is the maximum rate of generation

of multicast bits that can be drained to the terminals.
If k = O( n

log(n)3 ), the highway traffic load is the bottleneck
multicast scheme. So λ′

m = Θ(W
√

n
k ) is the maximum

achievable rate.
Case 2: We apply the same scheme explained in Case

1. However, in this case the draining traffic becomes the
bottleneck. Therefore, λ′

m = Θ(W n

k
√

log(n)3
) is the maximum

achievable rate for this case.
Case 3: When k = Ω( n

log(n)2 ), we get better throughput by
not using the highway technique of Case 1. Instead, here, we
fix the transmission range to rl and route the packet through
large-cells using routing protocol of [22]. It can provide
throughput of Θ(W

√
n

k log(n) ).
Case 4: We can achieve the bound by applying broadcast

schemes explained in [13], [15]. Interestingly for achieving
this bound the transmission range can be any r = Ω(r l).

Note that the proposed scheme in Case 1 and 2 can work for
all channel models except Protocol Model 3, because, they can
vary the transmission range of the nodes at different time slots,
however, Protocol Model 3 considers a fixed transmission
range.

Next, we combine the computed lower bounds with the
upper bounds in (17), then we obtain the following results:

(i) For d = 1 dimensional space λm = Θ(W )
(ii) For d ≥ 2 dimensional space

λm =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Θ
(

d

√
(n

k )d−1W
)

if k ≤ n
log(n)d+1

Ω( n

k d
√

log(n)d+1
W ) if n

log(n)d+1 ≤ k ≤ n
log(n)2

Ω
(

d

√
( n

k log(n) )
d−1W

)
if n

log(n)2 ≤ k ≤ n
log(n)

Θ (W ) if k ≥ n
log(n)

(19)

The maximum difference between computed upper bound
in (17) and lower bound (19) is O( d

√
log(n)) which occurs

for n
log(n)d ≤ k ≤ n

log(n)2 .

VI. MULTICAST CAPACITY OF LARGE MOBILE

NETWORKS

In this section we study the multicast capacity of large
mobile wireless networks. We consider a stationary mobility
model for the nodes with uniform spacial distribution, i.e.
we assume that n nodes are moving randomly and mutually
independent in a d-dimensional cube with volume V such that
at any given time instant the distribution of nodes is uniform.

The capacity mobile wireless networks for unicast flows has
been computed in [8]. The paper proves that the aggregate

unicast capacity of the nodes grows proportional to n as
Θ(nW ). While, [13] shows that broadcast capacity of mobile
networks is Θ(W ) and does not change asymptotically with
n. Here, we study the multicast capacity of large mobile
networks which certainly lies between these two extreme cases
asymptotically.

In Theorem 4, we prove that λm = Θ(n
k W ) for large mobile

wireless networks. This is in agreement with the previous
results on unicast capacity and broadcast capacity of mobile
networks [8], [13]. Note that the formula also demonstrate
that the multicast capacity of mobile networks is larger than
the capacity static homogeneous networks by at least factor of
Ω( d

√
n
k ).

Moreover, the theorem demonstrate that the gain of mobility
on multicast capacity reduces by increasing the number of
terminals in a fixed size mobile network. In extreme case k =
n which corresponds to broadcast the mobility gain is bounded
by a constant factor.

Theorem 4: Assume a mobile homogeneous wireless net-
work in d-dimensional space. Then for all channel models

λm = Θ(
n

k
W ) (20)

almost surely for large n.

Proof of Theorem 4: We consider an arbitrary node in the
network. The rate of infomation which is received or sent
by the node is bounded by the wireless channel capacity W
(O(W ) for Generalized Physical Model). Now, if the multicast
bits are generated at rate of λm, then on average λm · k

n bits
per second must be received/sent by the nodes. It follows that

λm · k

n
≤ W (21)

Thus, λm = O(n
k W ).

Next, we prove that λm = Θ(n
k W ) is achievable using a

mobility-based routing scheme. We employ a routing scheme
similar to the scheme of [8]. A transmission range of r =
d

√
V
n is considered for all nodes. A source node transmits the

multicast packet to a terminal (which does not have the packet)
when they randomly move into the transmission range of each
other. For speeding the packet dissemination process, we can
allow the terminals which have received the multicast packet
act as the source.

Here, a time scheduling technique similar to the proof
of Theorem 3 is used for scheduling the transmissions. It
guarantees that information bits can be sent to the air and
received successfully at the rate of Θ(nW ). Since, the scheme
uses at most k − 1 transmissions for transporting a multicast
packet. This scheme can deliver the multicast bits up to the
rate of Θ(nW/k).

VII. CONCLUSION AND FUTURE WORK

Most existing work on multicast capacity of large homo-
geneous networks is based on a simple model for wireless
channel, namely the Protocol Model [12], [19], [22]. In this
paper, we exploit a local capacity tool called arena which we



introduced recently [14] in order to render multicast acces-
sible to analysis also under more realistic, and notably less
pessimistic channel models. Through this study we find three
regimes of the multicast capacity (λm) for large homogeneous
wireless network depending on the ratio of terminals over the
overall size of the network. Further, the upper bounds of λm

we find are of the order
√

log(n) larger than the existing
bounds, and we are able to propose a multicast routing and
time scheduling scheme to achieve the computed asymptotic
bound over all channel models except the simple Protocol
Model. To this end, we employ percolation theory among other
analytical tools.

Furthermore, we studied the multicast capacity of large
mobile wireless networks. We showed that similar to unicast
case mobility increases the capacity of wireless networks for
multicast asymptotically. However, the mobility gain decreases
when increasing the ratio of the number terminals to overall
size of the network. In the extreme case where multicast is
equivalent to broadcast, the mobility gain reduces to a constant
factor.

Future studies can extend the analytical results on multicast
capacity for static wireless networks with multi-channels [18]
or directional antenna [26]. Also, they can investigate capacity
and delay tradeoff for the multicast capacity of mobile wireless
network similar to previous studies on unicast capacity [23].
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APPENDIX

A. Completion of the Proof of Theorem 2

We consider one of 3d − 1 points and denote
it by X . Assume that the set of transmissions
{(Si1 , Di1), . . . , (Sim , Dim)} contain the point X in their
transmission arena. In other words, |Sij − X | ≤ |Sij − Dij |
for j = 1, 2, . . . , m.

Without lack generality, assume that Si1 is the closet
transmitter to X (i.e. |Si1 − X | ≤ |Sij − X |).

Next, we bound the sum of the rates of these transmissions
and prove that M = O(1) for this particular case.

n∑
j=1

Wij =
n∑

j=1

W log2(1 + SINRij )

< Wi1+
n∑

j=2

W log2(e) · SINRij

< Wi1+ W log2(e)
n∑

j=2

Pij |Sij − Dij |−α∑
l �=j Pil

|Sil
− Dij |−α

≤ Wi1+ W log2(e)
n∑

j=2

Pij |Sij − X |−α∑
l �=j Pil

(
√

d + 15|Sil
− X |)−α

≤ Wi1+ W log2(e)
√

d + 15
α Pmax

Pmin

n∑
j=2

|Sij − X |−α∑
l �=j |Sil

− X |−α

< Wi1+ W log2(e)
√

d + 15
α Pmax

Pmin

n∑
j=2

2|Sij − X |−α∑n
l=1 |Sil

− X |−α

= Wi1+ W log2(e)
√

d + 15
α Pmax

Pmin

2
∑n

j=2 |Sij − X |−α∑n
l=1 |Sil

− X |−α

< Wi1+ 2W log2(e)
√

d + 15
α Pmax

Pmin

= O(W )


