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Introduction

It has been recognized that most fractals K observed in nature are actually composed
of an infinite set of interwoven subfractals. This structure becomes apparent when a
particular probability measure ; supported by K is considered: to every « belongs
the set C, of all points of K, for which the measure of the balls with radius p roughly
scales as p* for p — 0. In other words the various C, are the sets of local Holder
exponent o Since they are often fractals, p was termed multifractal.

The complexity of the geometry of C,, is measured by the spectrum f () which can
be thought of as representing the box dimension of C,. More precisely speaking
the number of boxes B of a d-grid with pu(B) ~ 6* scales as 6=/(®). However, the
singularities of y# may also be measured through the generalized dimensions dy, which
are related to the scaling law of the partition sums: Y p(B)? ~ 604~

Spectrum and generalized dimensions are very helpful when comparing multifractals
appearing in nature with analytically treatable measures. In various fields multi-
fractality has been found to be appropriate to describe phenomena in nature, like
catalytic reactions [GS], the distribution of galaxies [Sa], percolation, Brownian mo-
tion [Fed], growing structures [V2, TV], and many others appearing in the theory
of dynamical systems [Tél, V1].

Heuristical arguments suggest a close relation between d, and f: the convex 7(¢q) =
(1 - g)d, is the Legendre transform of the concave f(c). This allows to reduce the
somewhat tedious, if not impossible computation of f to the simpler one of d,.
Though used in different fields, the various notions developed for the purpose of
numerical simulations differ only slightly. A mathematically precise definition as
well as the important relation 7(g) = sup(f () — go) can be found in [Falcd]. But
unfortunately this concept turns out to be unsatisfactory for two reasons.

First of all the spectrum is defined through a double limes, which usually does not
exist for great a. Secondly the generalized dimensions take the irrelevant value
d, = oo for negative g. More concretely, for as simple multifractals as the middle
third Cantor measure half of the singularity exponents are lost and, even worse, the
important Legendre relation cannot be verified by [Falcd, prop. 17.2].

In the present thesis we propose a concept which meets the two mentioned problems
by a simple improvement. Instead of boxes taken from a grid of size d, we use a
kind of parallel body of these boxes. This renders a measurement F' resp. D, of the
singularities of j, which carries relevant information on the measure and which can

iii



iv Introduction

be treated with rigorous geometrical arguments. Furthermore, as an invaluable tool
for analytical and practical treatment of the spectrum, we introduce the semispectra
F* and F~. Doing so avoids problems of convergence. Moreover, the semispectra
are in some sense more regular than the spectrum itself.

The superiority of our concept is reflected in the following facts.

First, the generalized dimensions D, and the semispectra F* are invariant under bi-
lipschitzian coordinate transformations. Moreover, they depend regularly on the size
4 of the considered grids. In particular it is enough to consider the limit behaviour
for any sequence d,, such that 0, > d,., > vd, with constant v.

Secondly, the modification does not affect the generalized dimensions for positive ¢,
ie. Dy=d, (¢ >0).

Thirdly, the so-called singularity exponents T(q) := (1 — ¢)D, are indeed the
Legendre transform of the spectrum F(«). Therefore T is convex. And, what is
even more interesting in applications, if 7' is continuously differentiable, then F' is
the Legendre transform of 7' Similar properties have been claimed for f resp. d,,
but hold only for positive ¢.

Multiplicative cascades generalize the construction of the middle third Cantor set.
Starting with a compact set V, one chooses first r closed disjoint subsets V; of V,
then 7 closed disjoint subsets V;;, of each V, and so on. Provided the diameters of
the sets V;, ;, tend to zero with increasing n, this process generates a sequence of
compact sets K, each consisting of 7" components, which decreases to a nonempty
compact set K. Consequently K is homeomorphic to the product space {1,...,r}N.
Now, given r positive numbers p; with p; +...+p, = 1, there is a unique product
measure corresponding to the measures {i} ~ p; on the factors of {1,...,r}™. Its
pullback p is a probability measure supported by K. The construction of i explains
the term ‘multiplicative cascade’.

It is almost evident that the structure of the cascade must be reflected by the
spectrum. Moreover, one’s intuition should be that the so-called cylindrical sets
Vi, i, which possess the measure p;, - ... p;,, give the essential information about
the geometry of y—at least if their shapes are similar.

As a consequence most of the notions of spectrum used for the study of multiplicative
cascades work directly with coverings of K by cylindrical sets, instead of coverings
by boxes from a grid. Such a formalism may rightly be called ‘tailored to multiplica-
tive cascades’. It certainly possesses great advantages, since the embedding of p in
the particular euclidean space causes no problem. Furthermore symbolic dynamics
are used most effectively [BR, CM]. For instance the spectrum defined through
cylindrical sets is always concave [Lan]. Furthermore, for self-similar measures, i.e.
i =Y pyw;, v with similarities w;, the spectrum can be calculated with reasonable
effort [HP]. On the other hand this multifractal formalism cannot distinguish be-
tween p and the product measure. In other words it lacks geometrical relevance and
cannot be used to detect structures.

But exactly this is the aim of our approach. In chapter 1 we develop a multifractal
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formalism which is based purely on the geometry of measures and which does not
assume any stucture in advance.

Consequently we will treat arbitrary probability measures with bounded support.
Moreover, we will not assume concavity nor differentiability of the spectrum F'. To
support this approach examples will be developed, for which these properties do not
hold. So the duality between T'(q) and F () is violated: the singularity exponents
depend more regularly on the measures of the boxes, since they are defined through
a sum or ‘average’ [HJKPS]. The spectrum, on the other hand, carries a greater
amount of information.

The present formalism can be applied to any probability measure, in particular to
one obtained from observation and represented—incompletely of course—by some
thousands of sample points. Since the multifractal formalism can be used to compare
such an observed measure with an analytically treatable multifractal, we provide
formulas for the spectrum of self-similar measures in chapter 2 and of certain self-
affine measures in chapter 3.

A satisfying result is that the improved formalism leads to the same conclusions as
the one ‘tailored to multiplicative cascades™—at least for self-similar measures. In
this case all the cylindrical sets have the same shape and can be approximated by
balls. However, in the affine case, some of the cylindrical sets are long stretched and
thin. These sets of course cannot be thought of as representing balls. Our treatment
of this case shows how to modify one’s intuition.

Finally, besides a lot of examples, we provide evidence as well as rigorous results
concerning the interpretation of F(«) as the Hausdorff dimension of the sets C,, of
local Holder exponent o. The main problem here is, that the boxes of size § with
measure ~ §¢ do not necessarily form a sequence of decreasing sets as § — 0.
Summarizing we feel that the present thesis provides a better understanding of
multifractality and refines one’s intuition on self-affine measures.



Abstract

To characterize the geometry of a probability measure p with bounded support,
its so-called spectrum f has been introduced recently. A mathematically precise
definition has been given in [Falcd]:

o log(ns(a 4 €) = ns(a = <))
fl) = limlim “log?

whenever this limes exists. Thereby ng(c) is the number of boxes B = [[[lxd, ([+1)d]
in R? with integers Iy, such that p(B) > 6°. As will be shown, this definition is
unsatisfactory for reasons of convergence as well as of undesired sensitivity to the
particular choice of coordinates. A new definition F of the spectrum is introduced,
which is based on box-counting too, but which carries relevant information about
pt. The essential modification is that ns is replaced by the number of boxes Nj(«)
with p((B);) > 6%, where (B); is the box of size 3¢ concentric to B. In addition,
the lim;_,¢ is replaced by the lim sup;_,, for obvious reasons. The adaptation of the
well known singularity exponents to this concept reads:

I B),)?
T(q) = limsup—og(%il((d)l) )
a0 0g

This notion renders exponents T(g), which are invariant under bi-lipschitzian co-
ordinate transformations and for which the limit behaviour can be extracted from
considering any sequence &, such that d,, > 0,41 > vd, with constant v.

The important relation

T(q) = sup (F(a) - qa)

a€lR
is valid for ¢ # 0 and in the case of multiplicative cascades also for ¢ = 0. Conse-
quently T'(g) is convex. On the other hand, F(«) need not be concave, as examples
prove. In other words F' may provide more detailed information than the Legendre
transform of T. However, if T(¢) equals lim;_,o . .. and is differentiable on all of R,
then

o log(Nslade) = Nsla—¢))
Flo) = limlim “logd = inf (Tq) + ¢2)

for all a.
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viii Abstract

Invariant measures play a crucial role in multifractal theory. They satisfy an invari-
ance condition p = Y| pjw;,pu with positive numbers p; such that py +... +p, = 1.
When the maps w; are similitudes, i.e. |w;(z) — wi(y)| = Ai|z — y|, and when the
open set condition (OSC) holds, then 1 is termed self-similar and the singularity
exponents satisfy

Zpiq)\iT(‘I) -1 (1)
i=1

for all ¢ € R. This formula is already well known, but only for positive ¢. Moreover,
no rigorous proof has been given until now.

Self-affine measures are defined mutatis mutandis. We investigate maps of the form
wi(z,y) = (£N +u; Tvy +v;). Again under certain open set conditions we prove
that T(¢q) = max(I'"(¢), [~ (q)). Thereby I'" and ' can be obtained from equations
which naturally involve the characteristical values A; and v; and which reduce to (1)
if \; = ;. In particular, the box dimension of the support K is recovered for ¢ = 0:

dhox (K) = T(0) = max(d*,d").

Thereby d™ and d~ are defined through

T T

W) (gt—pm @)\ (d--D®
Z)\T-D | resp. ZI/Z'D /\i( D) = 1,
i=1 i=1

and D® denotes the box dimension of the projection of K onto the z*)-axis. Finally,
the ‘almost sure” Hausdorff dimension of K [Falc3] equals

dHD(K) = max(Af‘A’),

where

.
YA o1 ifyac<l, YA =1 Yy <l,
= and [

> ui)\f “1'=1 otherwise.

=
+_ .

)\iuf =1 otherwise, &

=1 =

1

Zusammenfassung

Um die Geometrie eines Wahrscheinlichkeitsmasses p mit beschranktem Triger
charakterisieren zu konnen wurde der Begriff des ‘Spektrums’ f eingefiihrt. Eine
mathematisch préiizise Definition findet sich in [Falcd]:

o log(ng(a+g) —nsla—e))
JO=mm—

wann immer dieser Grenzwert existiert. Dabei ist ng(a) die Anzahl der Wiirfel B =
T110, (I+1)6] in R? mit ganzzahligen Iy, fiir welche u(B) > 6%, Wie gezeigt wird, ist
diese Definition unbefriedigend aus Griinden der Konvergenz wie auch wegen einer
unerwiinschten Abhéngigkeit von der Wahl der Koordinaten. Ein neues Spektrum
F wird eingefiihrt, welches ebenfalls auf ‘box counting’ beruht, aber geometrisch
relevante Informationen tréigt. Die wesentliche Verdnderung besteht darin, dass neu
statt ng die Anzahl Ny(«) der Wiirfel mit p((B);) > 6* verwendet wird, wobei (B);
der zu B konzentrische Wiirfel mit Seite 30 ist. Aus einleuchtenden Griinden wird
zusételich der lims,o ersetzt durch limsup_,,. Die wohlbekannten ‘Singularitats
Exponenten’ werden in dieses Konzept eingebettet durch die Definition

g (X ul(B))
T(q) = hn}ﬁ]up .

Sie sind invariant unter bilipschitz-stetigen Koordinatentransformationen, und das
massgebende asymptotische Verhalten kann aus einer beliebigen Folge d, herausge-
lesen werden, vorausgesetzt d, > 0,41 > ¥d, mit konstantem v.
Die wichtige Beziehung

T(q) = sup (F(e) - q0)

a€lR

ist allgemein giiltig fiir ¢ # 0, und typischerweise auch fiir ¢ = 0. Folglich ist T'(q)
konvex. Andererseits muss F'(a) keineswegs konkav sein, wie Beispiele belegen. In
anderen Worten, F(«) kann mehr Information tiber y beinhalten als die Legendre
Transformierte von T(g). Doch solche Beispiele scheinen untypisch zu sein, denn es
gilt: Falls T'(q) gleich lims_yo ... und differenzierbar ist iiberall auf IR, dann ist

o log(Ns(a4e) — Ns(a—¢)) .
Flo) = limlim “logd = inf (Tq) + ¢2)
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X Zusammenfassung

fiir alle a.

Invariante Masse spielen eine zentrale Rolle in der Theorie der Multifraktale. Sie
erfiillen eine Invarianzbedingung der Art o = Y} p;w;, 1, wobei die p; positive Zahlen
sind mit p; + ... + p, = 1. Falls die Abbildungen w; Ahnlichkeiten sind, also
falls Jwi(z) — wi(y)] = Mz —y lIs es eine ‘Urzelle’ gibt — englisch: open
set condition (OSC)  dann nennt man y selbst-dhnlich, und die Singularitats
Exponenten erfiillen die Gleichung

Zpi")\iT(Q) -1 1)
i=1

fiir alle ¢ € IR. Diese Formel ist bereits bekannt, jedoch nur fiir positive ¢. Ausser-
dem ist uns bis jetzt kein strenger Beweis bekannt.

Selbst-affine Masse werden mutatis mutandis definiert. Wir untersuchen Abbildun-
gen der Form w;(z,y) = (£\iz + u;, £y + v;). Wiederum unter gewissen ‘Urzel-
lenbedingungen’ gilt T'(¢q) = max(I'*(g),I'~(g)). Dabei konnen I'* und '~ aus Glei-
chungen erhalten werden, welche die charakteristischen Werte A; und »; natiirlich
einbeziehen, und welche sich im Falle \; = »; auf (1) vereinfachen. Insbesondere
erhélt man die Box Dimension des Tragers K fiir ¢ = 0:

dpox(K) = T(0) = max(d*,d").

Dabei sind d* und d~ definiert durch

ZAD (DY) 1 ynd Zl/l denﬂl) 1,

i=1

und D® steht fiir die Box Dimension der Projektion von K auf die z*-Axe.
Schliesslich ldsst sich die ‘fast sichere’ Hausdorff Dimension von K [Falc3] berechnen
durch

dyp(K) = max(AT A7),

wobei
ZA“ falls ¥\ < 1, z VA = falls Y u; < 1,
und A
Z AATTU= 1 sonst, El vAd P =1 sonst.

i=

Chapter |
A Multifractal Formalism

To characterize the geometry of a measure, its so-called spectrum has proved to
be an invaluable tool. The present chapter, dedicated to its study, is organized
as follows: in the first section we introduce the multifractal formalism based on
box-counting—as it is developed and used at present—and give two reasons why it
should be changed. Thereby we stick to the notation of Falconer [Falc4]. In section
two we present a new concept and show that it possesses the expected regularities.
In the third section simple properties of the newly defined spectrum are discussed,
in particular its connection to the so-called singularity exponents.

The spirit of our approach is summarized in two remarks. First, we shall consider
arbitrary probability measures with compact support and provide results of consid-
erable generality. However, when more is assumed about the measure, in particular
that it is constructed by a multiplicative cascade, much more can be said. This
will be carried out in the remaining chapters. Secondly, we focus in this work on a
formalism based purely on the geometry of the measure, allowing a characterization
free from any assumption on the structure in advance. This is quite different from a
concept which emphasizes on multiplicative cascades and uses this underlying struc-
ture essentially. However for the measures considered in the subsequent chapters,
the two formalisms lead to identical conclusions. This will allow us to study limit
behaviours in the more convenient space {1,...,7}™ and to derive exact formulas
for the spectra.

1.1 The Status Quo

A compact set K in euclidean space R?, such as the middle third Cantor set, may
carry a rich geometrical structure. One way to measure the complexity of its ge-
ometry is to use a d-grid with variable § > 0 in the following way: A set of the



2 CHAPTER 1. A MULTIFRACTAL FORMALISM
form
d
LT 100, (1 + 1)3]
k=1

with integer values [y for k = 1,...,d will be called a d-boz. Letting Nj(K) denote
the number of d-boxes meeting K, the box dimension of K is defined as
log N;(K)

dyox (K) = 1i —_
box (K) 11161l%up —logd

Moreover, the notation dy(K) is used to indicate that the lims_,p actually exists.
The box dimension measures the amount of information needed to locate a point on
K. In particular, the box dimensions of a point, a line and a square are 0, 1 and 2,
respectively, which explains the name dimension. The literature on this field is vast.
For a profound introduction and for different equivalent definitions we recommend
[Faled].

The dimension dyo(K) describes the geometry of K in a global manner. More subtle
structures of K can be detected by considering an appropriate probability measure
o with support K. As an easy example imagine K to be the union of a line segment
and a disjoint square and let the measure py5 correspond to length on the line and to
area on the square. Then, obviously, s is more strongly ‘concentrated’ on the line
than on the square. In general one may think of K as the union of infinitely many
interwoven subsets, usually fractals, with homogeneous concentration of . Since
this structure is induced by p we call p a multifractal. Thus, we use ‘multifractal’
as a synonym for probability measure with compact support. Note, however, that
other authors [MEH, HJKPS] use the same name with different meanings.

A first attempt to seize this structure is the following, given by Falconer [Falc4,
p 257):

Definition 1.1 (Falconer) Let G5 := Gf be the set of all 6-bozes with p(B) # 0
and let ns(r) be the number of all bozes in G with u(B) > 6°. Then

I - —€
f(a) = limlim og(ns(a+¢) ~m(oz ))
€0 410 —logd

whenever the limes ezists. Thereby log(0) := —oo and this value is allowed for f.

This definition is still based on the method of box counting, but it involves the
measure fi. The function f is usually referred to as the multifractal spectrum or
simply spectrum of p. For the simple example 5 above f takes only two nontrivial
values, namely f(1) = 1 and f(2) = 2, which arise from the boxes covering the
straight line and the square, respectively. So, given a, the value of f(«) indicates
the density in the sense of box-counting of the set of points where p has the ‘con-
centration’ . This is the intuitive understanding of the spectrum [HJKPS, JKL].
Indeed, under certain conditions f(«) equals the dimension of the set of all points
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x with local Holder exponent a, which means that the measure of a ball with center
 scales as the a-th power of its diameter [EM]. For more precise statements we
refer to example 2.11 and to [CM, CLP, S]. Furthermore, the spectrum f of certain
self-similar measures can be directly related to the (probabilistic) distribution of the
local Holder exponents [EM]. But note that this matter is far from trivial, if treated
rigorously.
The spectrum often is a strictly concave function with a single maximum. But it
may as well look quite different (see Ex. 2.15, 2.16, 2.17, 3.3, 3.5 and 3.6). Note
that most proofs in the literature [BR, Lan] concerning this matter work with a
notion of spectrum ‘tailored for multiplicative cascades’ rather than one relying on
box-counting.

However, provided f is concave, then f(a) = sup{f(f) : ¢t < a} in the increasing
part and f(a) = sup{f(t) : t > a} in the decreasing part of f. This leads us to
defining the following auxiliary functions:

Definition 1.2 Let mg(c) be the number of all bozes in Gy with p(B) < 6°, so that
ns(a) + ms(e) equals #Gs, the number of all 0-bozes with nonvanishing measure.
Then set

log ms(a)

. logns() - .
*(a) =1 —= =1 Zo\
[H(a) L " oy [ (a) msup =S

Despite their simplicity, /™ and f~ usually contain the same information on y as
does f: when ng is strictly increasing at «, the term ns(cw — ¢) in the difference
ns(a + ) — ng(a — ¢) is negligible. So, the increasing part of f is usually equal to
f*. Since ns(a+¢) —ns(a =€) = mg(ev— €) — my(a +¢), a similar argument shows
that the decreasing part of f is usually equal to f~.

Performing numerical simulations or analytical investigations one will find it hard,
if not impossible, to calculate f* and f~. Even more tedious is the computation of
f. But the related singularity exponents 7(q) defined below are easier to determine
[GP2, GP1, Grl1, BP, JKP, BPPV, L], in particular since they depend more regularly
on the data p(B) [HIKPS, JKL]. Because f(«) is usually a concave function related
to 7(g) through the Legendre transformation [CLP, Falc4, BR] it is in most cases
enough to know 7(g).

This points to certain advantages of f* in contrast with f: their definition is sim-
ple and f* are defined for all a. Moreover, it is straightforward that they are
monotonous. As a consequence, f™ and f~ can immediately be derived from 7(q),
while the existence and the concavity of f do not hold in general and have to be
verified before applying the Legendre transformation. (Compare our theorem 1.1
with proposition 17.2 in [Faled]).

By introducing f and f~ a central difficulty in the handling of spectra—existence
and concavity of f is removed .

To discuss a second difficulty hidden in definition of f let us introduce 7(q). We
keep close to the notation in [Faled, p 255]:
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Definition 1.3 For ¢ € R let s5(q) := Ypeg, (B)! and define the singularity
exponents to be
) log s5(q)
7(¢) = lim sup —=—=.
(9) D
For later convenience, denote the corresponding liminf by 7(q). Finally the gener-
alized dimensions are given by

1
dy:==—r1 or 1 and dy=limsu B)?
’ 1_q(q) forq# ! mpB;;Jﬂ() g

The definition of G4 guarantees that boxes of measure zero do not contribute to s;.
Usually (see corollary 2.1) dy is just dpex(K), which explains the name ‘generalized
dimensions’. Since 7(1) = 0 holds trivially, a closer look at d; is required. This
will be carried out in section 1.3. The special value d;, which seems to be the most
interesting of all d, for several reasons [Gr2], was termed information dimension.
Together with the correlation dimension ds it was the first of all d, to be introduced
[GP1, GP2, OWY].

Several recent publications are concerned with the generalized dimensions of con-
crete examples and include more or less rigorously derived formulas. As it was
recognized in [CLP, HR], the difficulty in calculating d, is imperceptibly hidden in
the negative g-range: Even for the simplest multifractals as the middle third Cantor
set (Ex. 1.1), boxes with exceptionally small measure occur for certain scales § of the
grid. When risen to a negative power the measures of these boxes give an unnatural
large contribution to s;(¢). They will dominate the asymptotics of s5(g), which is
of course not intended.

A different asymptotic behaviour can only be obtained by restricting the measure-
ment to certain scales ¢ of the considered grids. But this requires that the structure
to be detected is known in advance. This point will be made explicit in the following
example. Note that it is neither exotic nor pathological, but on the contrary the
multifractal presented the most.

Example 1.1 (Cantor Measure) Let p; > 0, pp > 0 with p; +py = 1. Subdivide
[0,1] into three equally spaced intervals, assign the measure p; to the left one, the
measure py to the right one and throw away the middle one. With the remaining two
intervals proceed the same way, creating four intervals of length 1/9 so that the first
one obtains the measure p;?, the second and the third p; -py and the last one py® (see
Fig. 1.1). Repeating this procedure ad infinitum leaves one with a Borel probability
measure (compare section 2.1) having the well known middle third Cantor set as its
support.

The first claim is:

¢<0 = 7(g)=00.

Proof To every n € N there is a k, € IN with p,* < (1/2-37)", because
p2 < 1. Without loss of generality k, > n + 1. Then, d, := (1 —37%)3™ lies in

<t
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0 " 2

0 m 23 89 1
— L] I I | L
t t T —t
= == = -—= - = ==
—
== mg Ll | II — -
5 3

Figure 1.1: The construction of the Cantor multifractal for p; = 1/3 and py = 2/3
on the left and an illustration concerning the exceptional behaviour of some d,,-boxes
on the right (n=1).

[(1 =373 37"]. Since (3" +1)d, > 1, the box By, := [3"4,, (3" + 1)d,[ has very
small measure: B, N[0,1] = [1 = 37% 1], thus u(B,) = p*» < (6,)". For ¢ < 0'it
follows

56,1(q) 2 ﬂ(Bn)q Z (671)"(1

and
log 55, (g)
—logdu(q)
which proves the claim. ¥
To keep the proof simple, the box B, was chosen in special position at the border
of [0, 1]. However, the same behaviour can of course be recognized at every point of
K.
Only the restriction of § to a suitable sequence as e.g. d; := 37" allows to observe
the naturally expected behaviour:

>n-(=q),

se())= Y. el =m0+ ),
(i1,min)E{1,2}"

and hence .
log $5- 1
T*(q) — lim 08 Sg;, (q) o Og(pl +p2)

" oo —logd; log3

By the argument of theorem 1.2 the double limes

en o log(ng (a+e) —ng(a—<))
f1(@) = lim Jim, o3,

exists for all @ € R and equals the Legendre transform infyew (7*(¢) + aq) of 7*(¢).
The function f*(a) carries information about u and agrees with the intuitive under-
standing of the spectrum: it gives the dimension of the sets with Holder exponent
. The graphs of 7* and f* reveal the typical features, in particular the asymptotic
behaviour of dj = 7(¢)/(1 — ¢) and the concavity of f* (see Fig. 1.2).

A closer look reveals 7*(q) = z(¢) ¥q € R and even 7(¢) = z(q) = 7*(q) for ¢ > 0.
But note that this result is derived using strongly the particular position of K in
the 37"-grid.
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Figure 1.2: Generalized dimensions (on the left) and spectrum of the middle third
Cantor measure with p; = 2/3 und py = 1/3. The dashed parts are the asymptotical
lines for d* resp. the internal bisector of the axes touching the graph of f*.

Proof In section 1.2 we will introduce T(¢) which is a lower bound to 7(g) due to
proposition 1.6. By corollary 2.5 T(q) = I(q) = 7*(¢). Moreover, T'(q) = 7(q) for
¢ > 0 again by proposition 1.6. Regarding the sequence &, completes the proof. ¢
Similarly one can show

iy clog(ng(ate) —ng(a—¢))
(@) —lsl%lhlglullnf “logd

for all @ € R, and even f*(e) = f(«) for a < ay, where o denotes the maximum of
f*. However, provided « is large enough to satisfy 6* < min(p, ps), the difference
ns(e + ¢) — ng(o — €) takes the value zero as well as positive values for arbitrary
small § > 0. Consequently, f(a) does not exist for these . O

This example provides strong arguments for the need of a concept replacing defini-
tion 1.1:

e For negative ¢ the singularity exponents 7(¢) do not provide any useful in-
formation about p.

e As a first alternative 7(¢) is at hand. However, even in the simple example 1.1
7(q) depends heavily on the particular positioning of  in the space.

The double limes f(«) does in general not exist for all a. So, the theory
developed in [Falcd] cannot be applied (in particular proposition 17.2 giving
the Legendre relation between f and 7).

Finally, one may interfere that the restriction of the considered values 0 to
a suitable sequence d, would be sufficient. But the comparison of ¢; and
b, €[(1—=37™)dz, 0] in example 1.1 must destroy any confidence in such prac-
tice, since strict self-similarity cannot be expected in numerical simulations.
Moreover, even if the latter would be assumed, one had to know in advance

the contraction ratios of the self-similar process generating the multifractal.
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It is our concern to show that a simple but effective change in the way of measuring
the concentrations of  is enough to make the generalized dimensions a useful tool
also for negative ¢.

1.2 An Improved Formalism

This section provides the definition as well as the basic properties of the formalism
we propose.

Before starting we would like to put our method into a broader context.
Remember that the undesired behaviour described in the previous section arises
from boxes with exceptionally small measure. Collet et al. [CLP] pointed out that
for certain measures every such box possesses a neighbouring box with ‘normal’
measure. While in [CLP] a very technical partition sum is constructed to replace
s5(q), the idea in our mind is as simple as effective: we use the measure of boxes
blown up by a factor three.

The essential geometrical argument in the proofs below will be the following: when-
ever a box B intersecting K is considered, the enlarged concentric box B' meets K
in its ‘middle part’, i.e./ in B. Hence B' is a better approximation of a ball with
center in K than the original box B (see Fig. 1.3). So, we feel that this method is

Figure 1.3: When a box intersects the support K, then an enlarged and concentric
box will constitute a better approximation of a ball centered in K and eventually
meets K in a more representative part than the original box.

more accurate to measure local behaviour such as the Holder exponents, where one
usually works with balls centered in K. Moreover, for multifractals constructed as
the Cantor measure, a considerable part of K must be contained in the enlarged
box, leading to further properties and to the formulas for the spectrum of self-similar
and self-affine measures as given in the subsequent chapters.
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However, this does not mean that every multifractal can entirely be described by its
spectrum. In particular, also the newly defined singularity exponents may be infi-
nite and so-called left-sided spectra may occur. For examples see example 2.14 and
[MEH, ME, GA]. But it is important to notice that with the new concept one can
be sure that infinite singularity exponents imply arbitrarily large local Holder expo-
nents, while in the former formalism 7(¢) = 00 may as well arise from inappropriate
measurement.

d
Our formalism uses the parallel-body of a box: for £ > 0 and B = ] [lxd, (Ix + 1)d]
k=1

let
d

(B)s = T 10 — &), (e + 1+ K)d[. (1.1)
k=1
As will be shown, the particular choice of & is of no importance, as long as it is kept
fixed through the process. For numerical simulations it might be most convenient
to choose k = 1.

Definition 1.4 (Singularity Exponents) For ¢ € R let S5(q) == ¥ p((B)1)?
BeCs
and set

) log S5(q)
T(q) = limsup ——-.
@ s —logd
Thereby the value o is allowed. For convenience denote the respective liminf by
T(q). Moreover, whenever T(q) and T(q) coincide for a particular g, T(q) will be

called grid-regular.

Note that the condition ‘p(B) # 0’ chooses the boxes, not ‘u((B);) # 0’. This is
the central idea of the new formalism (see also Fig. 1.3).

Note, furthermore, that T(q) > —oc for all ¢: if ¢ < 0, then Ss(q) > 1. If ¢ > 0
consider a d-box B with maximal measure. Of course p(B) > 1/#Gj;, and since
there are at the most #G; < ¢~ d¢ boxes with nonvanishing measure, this leads to
I(g) > ~dg.

The question concerning the grid-regularity of T is of importance in applications for
obvious reasons.

The same argument that gives the independence of 7" from the choice £ = 1 also
proves its invariance under a considerable class of coordinate transformations and
justifies the restriction of the considered ¢ to a suitable sequence. So, the three
assertions will be treated in one proposition. Following the usual lines of interest
[OWY, Koh, FM] a bijective map @ from an open neighbourhood U of K = supp(y)
into R? will be called an admissible coordinate transformation, if it is bi-lipschitzian,
Le. if L7l a — y| < |®(z) — ®(y)| < L|z — y for some constant L. A sequence
() nen will be called admissible, if 0, — 0 and if there is a v > 0 such that
On > Opi1 > 00, Vn € IN.
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Proposition 1.5 Let ® be an admissible coordinate transformation, let ' = ®,p,
K >0,6>0 and let (6,)nen be an admissible sequence. Then

. log (ZBEGo‘n “((B)»c)q) . log (EBEC’E ﬂl((B)N’)q)
T(q) = limsuyp ——————= =limsyp ——————
n-500 —logd, 310 —logé

for all ¢ € R. Similar for T(q). In particular these values are independent of k and
of the choice of the coordinate system.

Remark The same holds for 7(¢), but only for ¢ > 0, as the two admissible
sequences of example 1.1 show.

Proof We let G = Gg,, be the set of ¢"-boxes B with 4//(B) # 0 and compare the
values Sy (¢, k') = Lea, H((B)w)? with S5(q, ) = X peg; 1((B)x)".

i) To every term in S§ (g, k') a greater one will be constructed in S;(g, &).
Take &' > 0, B' € GY,. Writing C := ®!(B') and D := ®~}((B"),/) for short,
w(C) = @(B") # 0 and diam(D) < L - diam((B')) = LVd(1 + 2+)8'. For
every 0 > 0, the choice of which is postponed at the moment, the d-boxes
constitute a covering of R%. Hence there must be one of them, say B, which
meets C' and is no p-nullset. Consequently Be is in Gs. Choosing § suitable
can result in (B¢), C D or D C (Bg)y, as desired.

{'

B B’

¢ []

®), ®)

(142K)8 (1+2K)%

Figure 1.4: ® and @' are lipschitzian.

a) ¢ > 0: The constructed box B¢ should be large. The claim to prove is:
with 7, == k7 IV/d(1 + 26') and by := (Iv/dv™ln, + 2)? the estimate

Sylgk)= Y W((B)e)' < 3 wl(B)e)"=biSs(g,k)  (12)

BleG, BeGs

is valid for every § € [i6', v, "], First, the definition of 7 guarantees,
that k0 > diam(D). Thus D is contained in (Bg), (see Fig. 1.4), and

1((Be)e) 2 (D) = 1 ((B)w) # 0.
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The same estimate holds for the ¢-th powers and the larger term in
Ss(q,%) is found. The given construction is not one-to-one, but the
number of all ¢'-boxes B’ for which the same box Bc has been con-
structed, is bounded by the constant b;. Repeating each term in S(q, %)
by times produces a counterpart for every term in Sj (¢, &'). This estab-
lishes (1.2). To prove the mentioned property of b; fix B. If B has been
constructed as the counterpart of some B', then ®(B) N B’ # (. But
since diam(®(B)) < Lv/d6 < Lv/dv~'5,8", there are at the most by boxes
B' which can intersect ®(B). So, we are done.

b) ¢ < 0: This time the constructed box B should be small. For any ¢ <
0 = ((1 4 &)VAL) 'K, the set (B), is contained in D and so
0# u(B) < p((B)s) < D) = p/((B')w). Rising the inequality to the
¢-th power reverses the sign. Similar as in a) the number of boxes B’
which lead to the same B, is bounded: since diam(®(B)) < Lv/dn,d',
at the most by = (Lv/diy + 2)* §'-boxes can meet ®(B). This implies
immediately:

Si(g,6') <baSs(q, k) VI <md. (1.3)

ii) Interchanging K with K’ and  with ' yields:

a) ¢ >0: Ss(q, k)
b) ¢ < 0: Ss(q. k)

bsSh(q k') V'€ b, v ). (14)

<
< bSplg ) YV <nid (1.5)

iii) It is easy to derive the desired conclusions from i) and ii). The proof is only
given for the limes superior:

a) ¢ > 0: Applying (1.4) with &' = ;0 implies:

log S5(q, %) _ log Sy (g, #') +loghy

—logd ~ —log(¢") +logms
hence e § log §!
lim sup L0820, k) 3(.%) < limsup I/ AL y(0.K)
510 —logd 710 —log o

On the other hand, given &', n can be chosen such that 6, > md' > 0,11.
Then &, < v, < mo~'d', and with (1.2)

log S5 (¢, K') ‘ log S5, (g, %) + log by

—logd" — —log(d,) +logm
thus
log Sy (g, &' log Ss(0,%) . logSs(g,
lim sup 08 5(4. ) < limsup 08 5 4.1 < lim sup 08 53, K).
810 —logd’ n-oo  —logd, 510 “logd
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b) ¢ < 0: The argument is the same as in a) except that n is such that §,; >
790" > d,. Applying then (1.3) to § = 4, gives the estimate of the
numerator, and d, > vd,_; > vipd' bounds the denominator.

Summarizing:
log Si(q, &' 1 1
tim sup 850 _ 108 S6(an) o ToBSs(eR) oy g
510 —logd 510 —logé nooo —10g 0y,

Thereby it is of course possible to choose £ =1 or ® to be the identity. <

It is interesting to know how the modification in the measurement of the concentra-
tions of  affects the singularity exponents.

Proposition 1.6 Let (0,)new be an admissible sequence. Then

1
(¢) = liminf 0850.d) 56,(0)

1
T(q) = r(q) =limsup - lg) T(q) ne0 —log

n—oo lOg 6n '

for any ¢ > 0 and
T(q) <), Tl <zlo)
for any ¢ <0.

Remark Example 1.1 provides a multifractal and two admissible sequences (0,,)pem
and (6,")pen with

_ . logsg(e) o logss(g) o
T(q) = lim — g0, < Jim Tlogd, m(g)=00 Vg<O.
Proof The argument is only given for T(g) und 7(g).
The first part is easy: the measure of each box B € Gy is nonvanishing and certainly
smaller than the one of (B);. Since the sums s;(¢) und Ss(¢) run over the same
boxes, this gives immediately

m(¢) <T(g) Yg>0 (¢) > T(g) Vg <O. (1.6)

Now take ¢ > 0. To every term in S;(g) a greater one will be found in s;(q). Take
B € Gs. There are exactly by = 3% 6-boxes C intersecting the parallelbody (B);.
Letting Cp to be one of maximal measure among them yields

0<u(B)< Y uC) < h(Ca). (17)
Cn(B)1£0

Now fix a 0-box C' and ask, how many §-boxes B could possibly share C' as Cp.
Since C' und (B); meet, so do B and (C);. But (C); intersects at the most bs
d-boxes B. So, observing (1.7) and repeating the terms in s5(g) results in:

Silq) <Y w(Cr) <BE-bs Y- pl(0) = b8 "s5lq) Vo> 0.

BeGs CeGs
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Applying this to the admissible sequence d,,, proposition 1.5 and (1.6) yield:

oo g8 (g) o logsss, (q)

T(q) = limsup “logs, S lim sup “logs, < 7(q) < T(q)-

It is not possible to carry out this construction for negative ¢. Of course to every
d-box C one may find a ¢'-box B, the parallelbody of which is contained in C. But
as example 1.1 shows, it is not possible to guarantee simultaneously p(B) # 0 and
8" > const - J. O
The definition of the spectrum will now be modified in the same way as the one for
the singularity exponents.

Definition 1.7 (Spectrum) The semispectra F* and F~ are given through
1‘7\]6(0[) = #{B S GJ : /I((B)]) > (5a} M,;(a) = #{B S G,; : M((B)]) < (5a}

log Ns(a log M,
F*(a) := limsup 05 Ni(o) F(a):= limsupLJ(a).
510 —10g5 4510 —logd

They have to be considered as auziliary functions enabling a better treatment of the
spectrum, which is defined as follows:

log(N, — Ns(a—¢
F(a) := limlimsup 0g(Ns{a +¢) — No(a ))
0 510 —logd

Thereby the value —oo is allowed.

It should be emphasized that this notion uses measures ;((B);) where the boxes
B have been selected by the condition p(B) # 0. In order to discuss problems of
convergence F'(o) will be called grid-regular, whenever the limsup,_,, is actually a
limes, i.e. whenever

log(Ns(a +¢) — N5 —¢))
<10 610 —logd

(18)

for a particular a.

F will prove to be free of the kind of anomalous behaviour f suffers from. For
instance, for the middle third Cantor measure (Ex. 1.1) one finds F = f*, while f
is only known in the increasing part.

First the regularities of the semispectra corresponding to the ones of the singularity
exponents will be proven: The equality T = 7 (¢ > 0) translates to F™(a+) =
fT(a+). In words: the rising part of the spectrum is essentially left unaffected by
the replacement of u(B) by p((B);). Moreover, F' is essentially invariant under
admissible coordinate transformations and one may use an admissible sequence for
its calculation.

The functions F*(a) and f*(a) are monotonous increasing, F~ (o) and f~(«)
monotonous decreasing. Thus the onesided limites F*(a+) = lim. o F*(a + ),
etc. exist.
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Proposition 1.8 The values F*(a+), F™(a—), F~(a+) and F~(a—) are invari-
ant under admissible coordinate transformations. Moreover, they can be calculated
through admissible sequences and do not depend on the particular choice k = 1 of
the constant factor the bozes are enlarged with. In addition

Ftlat) = ffat), F(af) < f(ad).

Remark Equality between F~ and f~ may fail as example 2.1 shows.

Proof The labeling of the steps in this proof as well as some constants correspond
to the ones in the proof of proposition 1.5, since the basic idea of the argumentation
is the same. As above the notation y' = ®,p, K' = ®(K) etc. is used. The counting
function Nj(, k) corresponding to w and enlarged boxes (B), is compared with
Nj (a, k') corresponding to 4/ and enlargement '. This is done to take advantage
of symmetries.

0) The case a < 0 is trivial:

a) Nj(a, k") = Nj(a. k) = ngla) =0, Ft(a) = fT(a) = —x.

b) Mj(e, k) = ms(a) = #Gs = S5(0,k) and My (e, k') = mj(a, k') =
#GY = S5(0,k"). Furthermore, F~(a) = f~(a) = T(0) due to (1.2)
and (1.4) (with ¢ =0).

For the remainder o > 0 is assumed.

i) Take & > 0, B' € G% and & > 0 arbitrarily. Since ®~'(B') has positive ji-
measure, there must be a box B from G intersecting it. The intention is to
compare f1'((B')w) with p((B),) for a suitable 4.

a) Concerning Nj: Take B' with y/((B')) > (¢')* and choose ¢ such that
(B), has large measure too: for § € [0, v="n,0"] the set &~'((B')) is
contained in (B),. For d small enough, i.e. < (v/n)%/*, one obtains

H((B)) 2 J((B)e) 2 ()" 2 v 6" 2 67

So far a B € G¥ was constructed for every B' € G%. Several B' can lead
to the same B. But at the most b; such B can intersect the same (fixed)
B. Consequently

N (a, &) < by Ns(e+ ¢, k).

Moreover, for sufficiently small §' > 0 there is an integer n such that
6n > md" > 0ppr. This implies 6, < v,y < v7ind, allowing to
conclude from the considerations above (0 = d,, £ = 1):

log N}, (av, &' log IV,

lim sup log Ny 0, ) < limsupw <Fta+e). (L9
510 —logd’ n—00 —log 0,
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b) Concerning Mj: Take B' with 1/((B'),) < (¢')* and choose ¢ such that
(B),; has small measure too: for § < 10" the set (B), is contained in
®71((B)x). So, if & < 1,%/¢ then

H((B).) < ((B)) < (F)° < ™67 <5

And by a similar argument as above

Mj (k') < boMs(a — ¢, k).
Moreover, if n € IN is such that d,,_; > 726" > 0, then 8, > vd,_1 > vid'.
Using this to estimate the denominator the considerations above yield
(0=0bn k=1)

log M;, (a —¢)

log My (e, &'
w <limsup ——"——+ < F (a—¢). (1.10)

lim's
H?/fgu L log &’ n—00 —logdy,

ii) Interchanging K with K' and « with £ in i) gives:
a) Concerning Nj: Nj(a, ) < byNj (o + ¢, ) for 0" € 36,07 n30] and §
sufficiently small. With x =1 and ¢’ = 130

log Nj (o + ¢, K')

F(a)<1i 1.11
e
and with £ = £" = 1, ®=identity
log N, log Ny
iminf 280 (0) g 08 Ne (0 ) (112)
ns00 —logd, 310 —logd’

Thereby one has to pick the one integer n satisfying v='n30,,; < &' <
v 30, for given 0. (1.12) will be used later.
b) Concerning Ms: Mj(a, k) < bMj(a — ¢, ') for &' = 146 and ¢ suffi-
ciently small. With x = 1:
A '
F(a) < limsup log Mj (a Is, K )
510 - log6
iii) Applying (1.9) and (1.11), resp. (1.10) and (1.13) with different values o, a +e¢,
o — ¢ and so on, the invariance of F'*(az) resp. F~(az) is readily derived.

(1.13)

Finally let us compare F' with the former formalism f.
iv) The trivial estimate u(B) < u((B)1) implies f*(a) < F*(a) and f~(a) >
F(a).
v) Let € > 0. To every given d-box B with p((B);) > 6* (1.7) gives a d-box Cp
with
u(Cp) 2 b5 p((B)1) 2 0°%,

provided § < bgl/ °. At the most b5 boxes B may generate the same (fixed)
Cp. Consequently, Ny(a) < bs-ns(e+¢) and FF(a) < fF(a+e).
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vi) From iv) and v) f*(a+) = F(a+) and f*(a—) = F(a-). <o
Besides being monotonous, F* and F~ possess further simple properties. In the
region a < 0 for instance F*(e) = —oo und F~ (o) = T(0). This is generalized by:
Lemma 1.9

T(0) < max(F*(a), F~(a)) <T(0) Vo €R.

Proof The upper bound is trivial due to #Gs = S5(0). Assume now F* (o) < T(0).
Choose 7 > 0 such, that F*(a) 4+ 3n < T(0). Then choose a sequence (0y,)nem
tending to zero such that

1
85,(0) > 8,770 and 4,7 < 5 Vel
Now there is ng() such that
1
Ny, (a) < 6,7 1@ < 5,15, =100 < 550.(0) Yn >y,

This implies
1
ﬂ[lgn (a) = S;n(()) —1 ,5" (Oé) > §Sgn(0)

and thus F'~(a) > T(0), which proves the claim. O
Finally the relation between the semispectra and the spectrum is investigated. Cer-
tainly

F(o) < min(F*(a+),F~(a-)). (L.14)
The intuition, that equality in (1.14) should hold, is supported by lemma 1.9, by the
monotonicity of the semispectra and the intuition that F(o) = sup{F(t) : t < o}
= F*(a) in the increasing part and F(a) = sup{F(t) : t > a} = F~(a) in the
decreasing part. Consider figure 1.5, which suggests for which a one can expect
F(a) =F*(a): at the points where F*(q) is either strictly monotonous or equal to
—o0. In fact, to prove the desired equality it is sufficient to require an even weaker
condition: A function ¢ is called quasi increasing at o, if

o <a<a implies  #(a') < t(a").
Thereby —00 < —o0 by definition. When the same holds with reversed inequality,
t is called quasi decreasing at a.
Proposition 1.10 a) If F* is quasi increasing at o, then
F(a) = F¥(a+) = (o)

and F(a) shares the properties of F*(a+) stated in proposition 1.8. If in
addition for any sufficiently small € > 0 there is an admissible sequence 0, for
which loa N

o logN (0+2)

n%0  —logd,

eists, then F(a) is grid-reqular.
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b) If F~ is quasi decreasing at o, then
F(a)=F(a-)

and F(a) shares the properties of F~(a—) stated in proposition 1.8. If in
addition for any sufficiently small ¢ > 0 there is an admissible sequence &, for
which

i log M;, (@ —¢)
nveo —logd,

exists, then F(«) is grid-reqular.

Figure 1.5: The connection between semispectra and spectrum illustrated using the
spectrum of the middle third Cantor set: the increasing part of F is given by F*,
the decreasing part by F~. Thus F = min(F*, F~) in this example.

Proof For reasons of simplicity only the case x =1 is considered. However, it is
immediate that the arguments below apply to any choice of k. From this follows
the independence of F' from & under the stated hypothesis.

i) Assume that ¢ satisfies F*(a—¢) < F*(a+¢). Given the case F*(a—¢) # —o0
this means that Nj(a + <) grows essentially faster than Nj(ow —¢). More
precisely: choose 7 > 0 such that F*(a —¢) +3n < F*(a +¢) and take a
sequence (b, ),en which gives the limsup F*(a + ¢). This means that there
is ng(n) with

1
Ny (a+¢) > 6, 7Tt Ny (a—g) < g, T g1< 5 (119)

for all n > ng. This implies
%NJH (a+) <Ny (at+e)-Ns(a—g) Va>n.  (L16)

Observing Ns(a — &) > 0 gives
Ffa+e) < lin;;up Lo (Mol Jr_i)og? 5N5(a =

<Ffla+e)  (L17)
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Given the case F*(a—¢) = —oo there is a §y > 0 with N(a —¢) = 0 V§ < 4.
The inequality (1.17) holds then trivially.

ii) Provided F*(a) or F*(a+) is quasi increasing at «, (1.17) holds for all ¢ > 0,
implying F(a) = F*(a+). If, on the other hand, F~ is quasi decreasing at a,
the term M;(a — <) dominates the difference My(o — €) — My(a + ¢€), which
equals Nj(« +¢) — Ns(a — ¢). Hence F(a) = F~(a—).

iii) Concerning the grid-regularity in a): by (1.12)

lgNs(ate) . . 10gNs, (a+e/2)

=F" £/2) > Ft(a—
5 imin ~logd, (a+¢/2)>F (a—¢)

lim inf
510 —log
for sufficiently small & > 0. Take first the case F*(a —¢) # —oc. With >0
satisfying F*(a—¢) +3n < F*(a +¢/2) it may be proceeded as in i) finding
(1.16) to hold not only for a particular sequence but for all sufficiently small

0 > 0. As a consequence
log (Ns(a + ) — Ns(ar—¢)) tim log Ns(a +¢)

li =
5%1 —logd (}w —logd

=Ff(a+e),

which is trivial in the case F*(a —¢) = —00. So (1.8) exists and takes the
value F*(a+) = F(a) by ii). In the corresponding situation in b) one finds
the existence of (1.8) and its value F~(a—) = F(a). O

Finally the modified definition of the generalized dimensions reads as:
Definition 1.11 (Generalized Dimensions)
L p((B):)logp((B)s)
BeGjy
log(0) L u(B))
BeG;

1 .
Dy = qu(tJ) (¢#1) D :=hrr}l%up

1.3 The Legendre Transform of the Spectrum

As it was already mentioned and what will be proved in this section applying the
transformation of Legendre to F' leads to T. So, once the spectrum is computed the
singularity exponents are readily obtained.

In typical applications, however, one will meet the converse situation: one would
like to be able to deduce the spectrum from the singularity exponents. This matter
would be straightforward if differentiability and concavity of the spectrum could be
assumed: F would simply be the transform of 7. But proofs establishing such qual-
ities [BR, Lan] work with a multifractal notion ‘tailored to multiplicative cascades’
and do not apply to our formalism. Moreover, we put forward counterexamples with
nonconcave spectrum F' (Ex. 2.15 and 2.16). For these multifractals the singularity



18 CHAPTER 1. A MULTIFRACTAL FORMALISM

exponents contain less information than the spectrum and cannot be used to obtain
the entire F(a)-curve.

Calculating F as the Legendre transform of T is thus valid only if it is known in ad-
vance that the spectrum is differentiable and concave. It is more convenient to start
with the semispectra F'* and F~, which are a priori known to be monotonous. This
property will turn out to be enough to prove that 7" determines the semispectra and
even the spectrum under reasonable conditions. In particular, no differentiability
has to be assumed about £*. To make the terminology precise we define:

Definition 1.12 (Convexity) A real-valued function t with domain ID is called
convex at the point oy, iff there are real numbers q and r such that

r+ga <t(a) Yo € D (1.18)

with equality holding for o = ag. We call it strictly convex at «y iff the inequality
(1.18) is strict for all & # o in D. If t is convex at all points of D, we call it
convex in D. If (1.18) holds with reversed sign we call t concave, respectively strictly
concave.

First a simple result on the Legendre transform is needed. Instead of condemning
the interested reader to an exhausting search of this vast and well known topic we
feel that the proofs are short enough to be presented right here. The assumptions
are tailored to concave functions ¢ and suit our purpose.

Lemma 1.13 Lett: R — R := RU{ 00,00} be arbitrary and define its Legendre
transform by {(q) := sup,eg(t(a) — qa) for ¢ € R. Then, either | and t are both
identically —oo or there exist four numbers A; < Ay < A3 < Ay in R such that

a) U(q) equals 0o for ¢ not in [Ay, Ay,

b) [ is real-valued, continuous and conver in ID :=]A;, Ay],
¢) 1 is strictly monotonous decreasing in Ay, As],

d) 1 is constant and takes its minimal value in [Ay, As],

e) [ is strictly monotonous increasing in |As, Ay|.

) 1
f) (Touching point of t) For all q in |Ay, Ay| there is a real number x(q)—strictly
positive for q €]Ay, Ay| and strictly negative for q €]As, Ay|—and a sequence
(20 )new such that

o= a(g)  tza) = Ug) +gz(g) (n— 0).

Moreover, if 1 is differentiable at q, then x(q) = —I'(q) is the only touching
point.

1.3. THE LEGENDRE TRANSFORM OF THE SPECTRUM 19

g) If 1 is linear in a neighbourhood of q, then t is not differentiable at o = —I'(q).

h) If A; < Ay and [(Ay) resp. U(Ay) is finite, then [(Ay) = [(A1+) resp. ((A) =
1(44-).

el I
) :

&

J'fq?

e &

Figure 1.6: The Legendre transform

Proof

i) If there is a ¢ with I(¢) = —oo, then ¢ must be identically —oo and hence [ as
well.

ii) Let us assume that ¢; < gy are such that [(q;) and [(gy) are real numbers. Then, ¢
is bounded from above by the two linear functions sy (a) := I(g;)+aq (k=1,2).
These two meet at a2 = —(I(q1) — 1(g2))(¢1 — g2)~". The linear function with
slope g3 € ]q1,qo[ which passes through the intersection point (a2, s1(c12))
bounds ¢ as well and hence {(g3) must be a real number too. From this a) and
the first part of b) result.

iii) Continuity as well as c), d) and e) follow directly from convexity. To prove the
latter the existence of z(q) is required first. Let g3 € |q1,¢0[ as above. By
definition there is a sequence (z,)uen such that #(z,) — g3z, — I(gs). Since
sp and sy bound ¢, the accumulation points of (,)nen must all lie between
a3 and ap3. Choose a converging subsequence and call it again z,. Since z,
converges say to x(gs), t(z,) must converge to r := s3(x(gs)). The explicit
formula of a5 now gives f), as soon as ¢) — e) are proven, and g) follows from
f).

iv) Next, the convexity of [ is shown using only the existence of z(q). First, I(g3) =
7 — q3x(gs) by definition of r. Letting n — oo, l(q) > t(z,) — qz, gives
l(q) > r — qx(gs) for all ¢. Hence [ is convex at gs.



20 CHAPTER 1. A MULTIFRACTAL FORMALISM

v) It remains to show h). Take gy € {4y, A4}. There is still a sequence , as above
which may be assumed to converge to z(qy) € IR. If z(qp) is finite the onesided
continuity follows from convexity. If z, — oo, then for any ¢ > 0 and ¢ € R
there is ny € IN with I(q) > #(z,,) — gz > l(go) — € + (qo — q)z,, for n > ng.
For ¢ < ¢y one concludes I(q) = oo, hence ¢y = A;. Letting ¢ | ¢o yields
I(go+) > l(qo) — &. On the other hand, (o) > I(go+) since by iv) [ is even
with domain [4;, A4[ convex at any ¢ € ]A;, Ay[. This proves the claim. The
case T, — —oo can be treated in a similar manner. O

Next, the Legendre transforms of the semispectra are calculated, which turn out to
equal T in the essential parts. Since F* is increasing and F~ decreasing, one may
only expect T to equal the Legendre transform of F'* for ¢ > 0 and the one of F~
for ¢ < 0. Moreover, there is an inherent lack of information about T(0). So it is
useful to express T as the transform of one single function for all q. To this end we
set

Definition 1.14
F™(a):=min (Ff(a+),F(a—)) and o*=sup{aeR : F*(a) < F~(a)}.

Proposition 1.15

T@)=SE§U*Wa)fqa)=SE§U”%a)fqa) Vg >0,
and
T@)=sggﬂ’ia)fqa):sggumwa)fqa) Vg <0.

Moreover, if o < oo, then

T(0) = sup F™(a) = sup F*(a).
acR a€lR
Example 2.14 provides a multifractal with o* = 0o and T(0) > sup,c F*(a).
Remark The proposition could as well be proven with F' replacing F™. However,
as theorem 1.1 shows, this gives no further information in our context.
Proof The idea of the first part is borrowed from J. K. Falconer. We will constantly
make use of the boundedness and the monotonicity of the semispectra (Prop. 1.9).
Write I(q) = sup(F™(a) — qa) and L*(q) = sup(F* () — ga) for short.
a€lR a€lR

0) As a consequence of the proposition to prove, F* cannot be identically —oo due
to T(1) = 0. However, for this conclusion to hold the claim of the proposition
has to be verified also for this case. So let us first treat the degenerate cases.
First, consider « satisfying F'*(a) = —oo. Then, p((B);) < 6* for all B € Gy,
provided ¢ is small enough, and

S,j(l) <#Gs5-0"<ec- Jid(sa,
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where ¢ = (diam(K) + 2)% is a constant and d is the dimension of R. From
this 0 = T(1) < d — a. In particular

a>d = Ff(a)>0, (1.19)

and F* = —oo is impossible.

The second degenerate case is: F~(a) > 0 for all a. Fix ¢ < 0 and take a
satisfying F'~(a) > 0. Then, there are arbitrarily small § such that M;(a) > 1.
Thus, for these § there is a box B* € G4 with p((B*);) < 6* and

Ss(a) 2 w((B))7 2 8%,
From this T(g) > —qa. By (1.19), the following implication holds:

F)20% =  T@=co=L()=lg) (4<0. (120)

Having treated the degenerate cases T shall now be estimated from below by [ and
L*

i) Fix ¢ > 0 and take o with F* (@) > —o0. Of course a > 0. For any v < F(«)
there are arbitrarily small 6 > 0 such that = < Nj(). For such values §

Soa)= Y m(By)'> > p(B))! > Ny(a)g** > 6™

BeGs w((B)1)>8*

and hence s §

T(q) = limsup Log S5(a) >y —qa.

510 - 10g(5

Since 1 is arbitrary, T(q) > F* (@) — ga. This is trivial if F*(e) = —o0. Thus
T(q) > L™(q). To establish T(q) > I(q) just take the limit o’ | a and obtain
T(q) > F*(a+) — qa > F™(a) — qa for all a.
Note: assuming the existence of lim;_,(— log Ns(a)/log §) one may even con-
clude T(q) > F*(a) — qao.

ii) Fix ¢ < 0. A similar argument as in i) yields T(¢) > F~(a) — ga for a > 0.
Moreover, by direct calculation T'(q) > T(0) > F~ () > F~(a)—gqa for a < 0.
Hence T(q) > L™(¢) and T(q) > I(q).

Note: assuming the existence of lim,_o(—log M;(e)/logd) one may even con-
clude T(¢q) > F~(a) — qa.

Now, to estimate T from above, fix ¢ > 0 and split G into sets of boxes with §* <
1((B)1) < 6%-=. For convenience denote these sets by G;(k). Their cardinality is
bounded by Nj(ke) as well as by M;((k — 1)¢). The appropriate bound will have to
be carefully chosen, depending on whether F* or F~ is estimated and whether ke
is greater than a* or not.
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iii) T < L* for ¢ > 0: Fix ¢ > 0 and take ¢ > 0. Note that by (1.19) LT(q) € IR.
Choose m € IN large enough to insure L™ (q) + gme > d. Then

S =(E X+ X )ul(B) <Y Nolhe)dt = 4 4G5 -6,
k=0Gs(k)  0Zu((B)1)<ome k=0
Choose d; such that
Ny(ke) < 5Lt (o) +ake+e) (k=0...m)

for all 0 < 6 < dy. Then

Ss(q) < i 5L (@+ee+e) + 5L <(m+1+ C)(S,(L+(q)+qi+£)
k=0

for § < dp, and hence T(q) < L*(q) + ¢e + €. Thereby & > 0 is arbitrary.

iv) T <lfor¢>0: If &* = 0o then F* = F™ and by iii) | = LT =T for ¢ > 0.
Otherwise, fix ¢ > 0 and assume without loss of generality I(q) # co. Take
¢ >0 and choose m € IN such that me < o* < (m + 1)e. Then, for a > me,

(ET+ ¥ + T Juny

k=0Gs(k)  0x<u((B)r)<ome  0#pu((B)1)<oe

Ss(g)

3 Ni(ke)d1®=1% 4+ Ny(a)d™ + Mj(a)o™. (1.21)
k=0

First to the case F*(a*+) < F~(a*=). Choose @ > a* such that F*(a) <
F*(a'+) +¢. Then

IN

Ft(a) < F™(a*) +¢ < Ug) +qo* +e,
F(a) < F(a=)=F"(a) < I(g)+qo,
Ft(ke) < Fr(ket)=F"(ke) < l(q)+ qke.

If | and F™ were identically —oco then by (1.21) S5(q) = 0 for small enough 4.
This is impossible, thus {(q) € IR. Now there is d; such that

Ny(ke) < §-0@Fak=e) () — )

and
AV5(0c) < 5—(l(q)+qa'+25)‘ A‘Vg(a) < 5 (@)+ea+e)

for all 0 < 0 < dg. Hence
S5(q) < (m+ 1)~ Uaiteste) 4 g=(@e=i2) | 5-(Ula+e)

and T(q) < I(g). Now, to treat the case F*(a*+) > F~(a*—), choose a €
Jme, o[ such that F~(a) < F~(o*-) +¢. This time F¥(a) < F™(a) <
U(g) + g and F~(a) < (q) + go* +¢. The rest goes along similar lines.
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v) T < L~ for ¢ < 0: unless F~ > 0, which is treated in (1.20), one may assume
the existence of a § with F~(8) = —oo. Fix ¢ < 0 and take ¢ > 0. Choose
m € IN satisfying me > 3. Then M;(me) = 0 and, similar as in iii),

Ss(a) < 3° Ms((k — 1)e)d™* < (m+ 1)g~(F @70
k=0

for small enough 4, thus T'(q) < L™(q).

vi) T < for ¢ <0: as above one may assume F'~(3) = —co. Fix ¢ <0 and take
¢ > 0. Since o < f < oo there are integers n and m such that ne > § and
me > o > (m —1)e. Then Ms(ne) = 0 for small enough ¢ and, provided
a < me,

n

Y+ + Jul(B))!

g <u((B)r)  dme<p((B)1)<o®  k=m+1Gs(k)

Ss(q)

N3(0)™™ + My(@)d™ + Y My((k — 1)e)%,

k=m+1

IN

Choosing a € Jo* — ¢,a*] such that F~(a) < F~(a*~) + ¢ in the case
F~(a*=) < F*(a*+), resp. a € Ja*,me] such that F*(a) < Ff(a'+) +¢
in the case F~(a*~) > F*(a’+), a similar argumentation as in iv) yields
T(g) < (q).

vii) For ¢ # 0 the assertions are proved. Provided a* < oo iv) holds for ¢ = 0
giving with i): 7(0) = 1(0) = sup,e F™ () < sup,e FH(a) < T(0). O

The notes in step i) and ii) of the proof above imply:

Lemma 1.16 The grid-reqularity of T(q) is a consequence of the existence of

log N5(«) (fe>0) resp. i log Mj(c)

] 0
i) ~logd a0 —logé (ifa<0).

where a = —=T"(q) and continuity of F* resp. F~ at « is assumed.

Moreover, proposition 1.15 implies that 7" is convex:

Lemma 1.17 T is certainly continuous, nonincreasing and conver on R*. More-
over, either these properties hold on all of R, or T(q) is infinite for all ¢ < 0.

Proof The monotonicity of Ss(¢) with respect to ¢ carries over to T. Continuity and
convexity follow from general properties of Legendre transforms. Furthermore, either
F~ () > 0 for all a and T'(q) = oo for all negative ¢ by (1.20). Or F~(a) = —o0
for a large enough; then T(g) is real-valued for all ¢ and o* < oo by (1.19). <&
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Example 2.14 provides a multifractal with grid-regular T(g), which is not even semi-
continuous at 0. Consequently for this multifractal T(g) = oo for all ¢ < 0.

Now it shall be investigated under which conditions the singularity exponents T
determine the semispectra and hence the spectrum itself. Since there are no regu-
larity conditions imposed on the semispectra, some assumptions must be made on
the singularity exponents.

Theorem 1.1 a) If T is differentiable at some g # 0 and if a = ~T'(q), then
F(a)=F"(a) =T(q) - qT'(q). (1.22)
In particular, F(a) shares the properties of F*(a) stated in proposition 1.8.

b) Assume that T is continuously differentiable in an open interval U and let V =
—T'(U). Then, (1.22) holds for all g € U (including 0) and F restricted to V
is strictly concave in the interior of V.
If, in addition, U contains 0, T is continuous in UU{0} and T' is bounded in
U, then the equality F = F™ and the continuity of F extend to V.
If, in addition to this, U contains an interval of the form ]0,¢[, then o* < occ.

¢) Provided that T is twice-continuously differentiable in an open interval U with
nonvanishing second derivate, then F is differentiable with respect to « at
a = -T'(q) with derivate q.

For measures with a situation as described in b) see examples 2.14, 3.6 and [MEH].
Proof Again we often use max(F*, F~) < T'(0) without pointing to it.

i) Fix ¢ > 0. Apply lemma 1.13 f) to t = F*. Note that A; =0 and A; = 0o due
to F*(a) >0 for @ > d and F*(a) = —oo for a < 0. Set & := z(¢) = limz,.
The monotonicity of F'* then implies F'* (@+) > lim, o0 F*(z,,) = T'(q) +qa.
On the other hand, F*(a) < T'(g) + ga for all a, which leads to

F(a+) <T(q) + q (@€, ¢>0). (1.23)

Consequently, F*(a1) < T(q) + qou < T(q) +ga = F*(a+) < F*(ay) for
@) < @< ay. Thus, F* is quasi increasing at @. Proposition 1.10 yields

F(a) = F*(a+) = T(q¢) + qa. (1.24)

To show that F™(a+) < F~(a—), assume that there is a n > 0 such that
F*(a+) > F~(a—) + 2n. Note that F*(a+) = F(a) is real. By lemma 1.13
(witht = F™) there is a sequence x,, — & with F™(z,,) — T(q)+qa = F*(a+)
for n — co. By monotonicity of F~ there is ny € IN such that F~(z,) <
F~(a=) +n for all n > no, implying F™(z,) < F~(z,) < F¥(a+) -9 =
lim F™(z,,) — 1. This is a contradiction.

If ¢ < 0 is such that T is real-valued in a neighbourhood, then @ = z(q) is
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real and by similar arguments as above F~(ay) > F~(a—) = T(q) + qa >
T(q) + gag > F~ () for ay < @ < ag. Thus

F(a)=F (a—)=T(q) + qa, (1.25)
which proves (1.22).

Now assume that T is continuously differentiable in U. Set U; = UNJ0,00[, Uy =
Un]—oo,0[and V; = =T'(Uy) (k = 1,2). Note that V} is an interval, not necessarily
oper.

ii) First, take go from Uy and set @ = 2(qp) = —T"(qo). By (1.23) and (1.24)

F(a) = F*(a+) = min (I(g) +qa) = = sup (~T(g) = ga).  (1.26)
q€R* geR*

By lemma 1.13 b) and h) (with ¢(¢) = =T'(¢) (¢ > 0), t(q) = —o0 (¢ < 0)) F
restricted to Vi is continuous. This is trivial if V) is a singleton. Suppose F
were linear in a neighbourhood of @ = —T"(¢p), contained in V;. Then, again
by lemma 1.13 ) and g), ¢ wouldn’t be differentiable at the unique touching
point z(@) = F'(@). By (1.24) this point is go, giving a contradiction. Hence
F must be strictly concave and strictly increasing in int(}).

iii) More can be said. Since FT is strictly increasing in int(V7), it is still quasi
increasing at the boundary of V; and hence F(a) equals F™(a+) in all of
V1. In case that int(V}) is empty, this is trivial by (1.24). In particular, F is
rightcontinuous at the left boundarypoint of V;.

iv) The same argumentation applies to F'~, showing that F' is continuous and equal
to F~(a—) = F™(«) in V3 and that it is strictly concave and strictly decreasing
in int(V3). Moreover, it still equals F~(a—) at the boundary of V; and is
leftcontinuous at the right boundary of V5.

v) The case ¢ = 0 needs a special treatment, since the Legendre connection is in
general not established for ¢ = 0, and since the loss of the strict monotonicity
inhibits the argumentation of i). However, it is enough to know that ¢ =
0 corresponds to the maximum of F. The only assumptions are: 0 € U,
continuity of T in U U {0} and boundedness of its derivate for ¢ — 0 in U.
This is certainly satisfied when U contains 0.

Assume first Uy # 0. By convexity @ = —T'(q) increases, say to ap, when
q 0. Of course ag € V. If 0 € U, then ag = —T"(0). From (1.24)

F¥(agt) 2 lim F*(a+) = T(0),
q
thus actually equality. By iii) 7'(0) = F'* (ag+) = F(ap), which in fact proves

o < ay < 0o and establishes (1.22) also for ¢ = 0 (provided Uy # 0)). More-
over, if V; # {ap} then it was just proven that F*(a+) is left-continuous at ap.
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Thus, F*(ap+) < F~(ag—), since F™(a+) < F~(a—) in V5. Consequently,
F(apt) = F~(ag—) = T(0). (L.27)

Similar F(ag) = F~(ap—) = T(0) for ap = limgg (— T"(g)), provided that
Uy # 0. Thus, (1.22) is established also for ¢ = 0, since U; and Uy are not
both empty.

Moreover, by the strict monotonicity of F' in V} and V5, the spectrum is also
in qq strictly concave and attains there its maximal value. Finally, to prove
F(ag) = F™(ap) proceed as follows. If V = {ag} then ag = —T"(q) for all
¢ € U and the claim follows from ii) or iv). Otherwise, V; and V3 cannot both
equal {ap}. The assumption V3 # {ap} can be used to prove (1.27) similar as
it is carried out with V3. Hence (1.27) is valid, implying what we claimed.

vi) Step ii), iv) and v) give the continuity of F' and the equality F = F™ at the
boundary of V under the assumptions stated in b). An application of the
inverse function theorem to —T" completes the proof. &

Due to theorem 1.1 the spectrum is pretty well determined by T', unless the latter is
piecewise linear. In this case only the values at some ‘wedge’-points can be obtained.
However, in the degenerate case this turns out to be enough:

Proposition 1.18 If T is everywhere linear, i.e. T(q) = T(0) — apq, then

F(a) = { T(0) ifa=a

—00  otherwise.

This comes to its extreme with T(¢) = 0 for a Dirac measure p.

Proof By (1.23) F*(«) < T(q)+qa =T(0)+¢(a— a) for any « and any positive
q. This allows to conclude with proposition 1.10 F(a) = F*(a) = —oc for a < aq
and F(a) = F~(a) = —oo for @ > ay. Theorem 1.1 gives F(ag) = T(0). o
Besides concavity there is a further property of F' one will typically meet and which
arises from the Legendre connection of 7" and F'.

Proposition 1.19 a) D, is positive and nonincreasing for ¢ > 0, moreover, it is—
except maybe at 1—continuous. Provided o < oo, these properties hold in the
whole interval in which Dy is real-valued, in particular at 0.

b) The existence of limy_,, D, is equivalent with the differentiability of T at 1 and
implies the following three facts: F touches the inner bisector of the azes at
D, = F(D)),

lim Dq = D1 = d] = *T’(l)

q—1

and Dy does not depend on the choice k =1 in the definition 1.11.
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Since the range of D, is of interest, we let Dy denote the infimum and D_. the
supremum of D, over all real ¢. In the case o < oo one finds

Dy, = qlgﬂf)\ D, = liIglo D, and D_y:=supD,= lim D,

q— 4R g——00
where the value D_,, = oo is allowed.
Proof From T(1) =7(1) =0
T(q) - T(1
D,=~- (0 1() for ¢ # 1.
q-

By lemma 1.17 D, is real-valued for ¢ > 0, ¢ # 1. Since it equals the negative
slope of the line intersecting the graph of T at 1 and at ¢, it cannot increase and is
positive. Now let 0 < ¢; < 1 < g. Fix § > 0 and £ > 0 and set

h(q) :=log( 3 p((B)x)?) = log(Ss(q, x),
BeGs
supplementing (1.1) with (B)y := B. Since Gy is finite, h is smooth and—by ele-
mentary calculus—convex. The mean value theorem of calculus gives

h(Ql) _ h(l) < h,(l) < h(QZ) _ h(l)
an-1 - N

Dividing by logd and letting 0 — 0 gives

. Bg}gﬂ((B)K)logu((B)n)
Dozlimswiedy 5wy 20w 08

BeGs

Thereby proposition 1.5 and Z'(1) = z(1) = 0 were used. So, monotonicity of D,
holds throughout ¢ = 1 and the proof of a) is complete. Trivially lim,,; D, =
—T'(1). Let us assume that this limes exists. It must by (1.28) take the value D;,
which does not depend on £ > 0. With £ =0 (1.28) gives D; = d;. Furthermore,

F(Dy) =T(1)=T'(1) = D,

by theorem 1.1. Observing Ns(aw —¢) > 0 and applying (1.23) with ¢ = 1 shows
F(a) < F*(a+) < a for all @ and the proof is complete. O
Comparing the definition of [, with the one of D; one might suggest that the latter
provides a different and specific information about the multifractal . Indeed, D
is considered to be the most interesting among all D, [Gr2, GP2]. Apart from
proposition 1.19 there are further facts which support the peculiarity of D;. They
are listed without intention to be rigorous:

o D; is the only D, which remains invariant under a greater family of coordinate
transformations [OWY, Koh].
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e The measure ;i is concentrated on a set of dimension D; [Faled, GH1]. In
this context it should be referred to subsection 2.4.4, in particular to the
examples 2.10, 2.11 and 2.13 therein.

o Closely related to the latter is the fact, that D; often equals the Hausdorff
dimension of x. In addition, the Hausdorff dimension of certain self-similar and
of some self-affine sets can be obtained as the maximal information dimension
Dy of the canonical invariant measures. Compare example 2.6 on page 53 and
(3.28) on page 104.

o Amazing too is the fact that for the family of self-affine multifractals in chapter
three the differentiability of 7' can be proved a priori only at ¢ = 1.

Finally, some remarks on the grid-regularity of T(q) and F(«) are added. First,
remember proposition 1.10 and lemma 1.16. To conclude in the opposite direction
one can use the theorem below. It gives the grid-regularity of F(«) and even gen-
eralizes (1.26). But it has the disadvantage of not allowing piecewise differentiable
functions T, which may appear with self-affine multifractals.

Theorem 1.2 If T is grid-reqular and differentiable on all of R, then

i fim log(Ns(a + ) — Ns(a —¢€))
<10 640 —logd

=Fla)= ,}Q{{(T(Q) +qa) VYaeR.

In particular F(a) is grid-regular for all . Moreover, F is real-valued ezactly in
[Dooy D_oo) and continuous there. Thereby, the formula

Dig = lim —T"(g)

40
is valid.

Proof Write /(o) = — infer(T(q) + ga) = sup,er (=T'(q) — ga) for short.

i) T is convex for ¢ > 0 and for ¢ < 0. Since it is differentiable at 0, it has to be

convex there as well.

ii) Now take any sequence (8, ) of positive numbers, tending to zero, and fix it.
In order to apply Ellis’ theorem I1.2 [Ell, page 3] supply G;, with the uniform
distribution denoted by P,. Define the random variable Y;,(B) := log(u((B),)
on Gj, and calculate its moment generating function:

1
E,[e®™] =—5;.(q)
[e #G(s" Z u(( 55, (0) 5.(0)

BeGs,
Next define a,, := —logd,, and

1 log S5,(g) _ log S5, (0)
. = —log B, [¢?¥"] = =2 20
ald P ] ~logé,  —logd,
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The hypothesis of the theorem to be proven and i) imply, that
clg) = lim calg) = T(q) = T(0)
exists and is a convex function, differentiable on all of R. Thus, the hypotheses

of Ellis” theorem are satisfied.

iii) Define now

1(z) = sup (gz = elg)) = = inf (T(q) = gz = T(0)) = T(0) + (=)

and set H := [—a,00[,G :=] — a, 00] for a fixed, but arbitrary a. Then

PV, €G] < P, € H) = P, 2 0g8,%] = —— N ().
ay, ay,

b (0)

Ellis’ theorem I1.2 now reads as

1 n log IV,
—inf{I(z) :z€ H} > limsup—loan[Yf €Hl= limsupw —T(0),
n—oo  (p an n—o0 710g6n
. Ya log Vs, ()
—inf{I(z) : z € G} <lim mf—logP [ € G] < liminf ] "6 T(0).
*  —logoy,

iv) Applying lemma 1.13 to the function ¢ = =T gives A;, ..., A; with the obvious
properties. Thereby, A, and Aj coincide because ¢ is differentiable at 0. Fur-
thermore, since T'is differentiable and convex, it must be continuously differ-
entiable. The expressions for D, and D_,, follow now from their definitions,
and the explicit formula for the Legendre transform I(t'(q)) = t(¢) — qt'(q)
gives A) = Dy, Ay = D_y. Even F = —[ is now established in [Dy, D_5],
but not yet the grid-regularity. By continuity of

=la) ifa<4,,
inf{I(z) :ze H} =inf{I(2) :2€ G} = T( )+ 1) A <a< A,
(0) l(AQ) if AQ <a.

The value @ = Ay has to be omitted to guarantee the first equality.
v) Since the sequence d, was arbitrary, iii) and iv) imply

logNs(a) [ —l(a) ifa< Ay a# A
N —l(Az) ifa> Ag.

F*(a)=1lim

() 30 —logé
Moreover, this function is strictly monotonous increasing in | Ay, Ay[. Thus, the
additional precondition of proposition 1.10 a) is satisfied for any a € |—o00, 4],
giving the grid-regularity of F(«) and its value

F(a)=F*(a4) = { i :5%2’)) EZ i jj } = —l(a).

Note that also the special value & = A; (lemma 1.13 h) and the special case
Ay = A, are covered.
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vi) Changing only the definitions of H and G to H :=]—00, —a] and G :=]—00, —a]
results in

1 1 1
P,[—Y, € H| > P,[—Y, € G] = P,[Y,, < logd,"] = ——Mj;,(a).
[ Yn € H] 2 P[-Y, € Gl = Pl < logdn”] 5.0 ()
Ellis’ theorem gives
1 Y, log M,
—inf{I(z) :z € H} > limsup —log P,[— € H] > limsupw—T(O)
n—oo Oy Ay, n—00 - lOg 571

and

1 Y, log M,
~inf{I() :z € G} <Himinf —log P " € G] = 11753@%;"(;:) ~T(0).

Since Ay = A3, one finds

T(O) + Z(AQ) ifa< AQ,
inf{I(z) :z€ H} =inf{I(2) :2€ G} ={ T(0)+l(a) if A <a <A,
o0 =l(a) if A < a.

A similar argument as above gives the grid-regularity of F(«) and its value

for all @ > A,. This completes the proof. &
This proof revealed some facts about the semispectra:
Lemma 1.20 IfT is grid-reqular and differentiable on all of R, then F(a) = F™ ()

for all o and

Fro) = lim BN (L a) e (a) = g 28]

a0 —logd 30 —logd (a7 44).

Chapter )
Self-Similar Multifractals

This chapter is devoted to the multifractals arising from a generalization of the
Cantor set construction. Sometimes this kind of construction is referred to as a
‘multiplicative cascade’ [EM] or as a ‘Moran construction’ [CM]. For the resulting
measures we will use the short form CMF, which may be read as Cantor Multifractal
or Cascade Multifractal. Though all CMFs will share a common basic structure,
their diversity is great enough to fit in the various applications [HP, V1, TV, GS,
Tél]. In section one we give the definition of CMFs and prove some properties they
have in common. In section two we present a short survey of a special case of
this construction: the Iterated Function Systems IFS, which are widely used and
studied [Bar, Falc4, Fale3, BEH, BEHM, Bed3, Bed4, GH2, GM, Mal, Ma2]. Again
a special kind of IFS are the well-known self-similar measures. The computation of
their multifractal spectrum is carried out in section three and applications follow in
section four.

2.1 Cantor Set and Codespace

First, the usual formalism in connection with Cantor sets and symbolic dynamics is
introduced. For a full treatment of the statements made in this section [Hut] is a
good reference.

Fix a natural number r. To design a so-called r-adic Cantor set K one generalizes
the construction carried out in example 1.1. Take a compact subset V of R? and

choose 7 closed subsets V1, ...,V of V, not necessarily disjoint. Now go on like this,
replacing V' by V; and denoting the subsets of Vi, by Vi ... Vi. So, inductively r
closed subsets Vi (k=1,...,7) of V; are obtained, where

=gy €L ={1,...,r}" and ixk:=1i)...0,k

for short. We will address i as a finite word, or just word, of length |i| := n, and
denote by I = Upew I, the set of all words. Moreover, it is convenient to introduce
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the empty word nil, and to define nil x k := k and Vi := V. The sets V; may
overlap, but
max {diam(V}) :i € L,} -0  (n— x0)

is required. Then define

K=V, and K:=()]Kn (2.1)

i€l nelN

The sequence K, is sometimes addressed as a cascade. Since it is a decreasing
sequence of compact sets, K is compact too and not empty. It is often a fractal in
the sense of dyex(K) ¢ IN—and carries a rich geometrical structure.

The decreasing diameters of the sets V; enable one to codify the points of K. Call

Lo =i = inig... s ip € {1,...,r}, ke N} = {1,...,r}"™

the codespace and set
(lo|n) =1y .. iy € I,.

For fixed iy the sets Vj;_jn) (n € IN) build a decreasing sequence of compact sets.
Thus their intersection will not be empty. Since their diameter decreases to zero,
this intersection is a singleton, say {z;_}, and the coordinate map

7l — K oo 7> Tj

is continuous and surjectiv (I, carries the product topology of the discrete spaces
{1,...,7}). Moreover, if the sets V; (i € I,,) are mutually disjoint for n large enough,
then 7 provides a homeomorphism of the topological spaces I, and K.
Now a measure £ is introduced which is supported by K and which carries informa-
tion about the construction of K. Let (py,...,p;) be a probability vector, i.e. p; > 0
and py+ ...+ p. =1, and let P be the product measure on I induced by the
measure {j} + p; on the factors {1...r}, Le.

Pl{in € Ing @ thy, = jm, m=1...0}] =pj, ... pj, = p;

for all n € IN, all words j of length n and all integers k; < ... < k,. This measure
P exists due to Kolmogorov’s consistency theorem [Pth, p 144]. It is Borelsch and
P[I] = 1. Thus the measure y1 := 7. P (i.e. u(A) = P[r7}(A)] ) has total mass
1(RY) =1 and at least the Borel sets of IR? are measurable. Moreover,

pVi) = P{j, € I n(i) € VI 2 P € Lo s (G I0) =} =pi (22)

with equality holding certainly if V; does not intersect any Vi with |k| = [i|. For
later use note, that if equality does hold in (2.2) for all finite words i of sufficiently
large length, then any singleton is a null set.

From (2.2) it is easy to see, that p is supported by K. For if z would lie in K
but not in supp(u), there would be a neighbourhood W of z which would not meet
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supp(p). But since there is also a set V; contained in W and p(V;) > p; # 0 this is
not possible. The reverse, i.e. supp(p) C K, is immediate.

Thus p is a multifractal, uniquely determined by the coordinate map and the prob-
ability vector. To express this we introduce the following notation:

p={(mpL,....or). (23)

Definition 2.1 A multilfractal p = (7;py,...,p,) constructed as above will be
called Cantor Multifractal, for short CMF. Its support is K = m(I,).

It is also common to say that y is constructed by a multiplicative cascade, referring
to the product structure of P as well as to the construction of K.

At this point we would like to stop for a moment and explain what is meant by a
multifractal formalism ‘tailored to multiplicative cascades’. This simply means that
in the definitions 1.4 and 1.7 of S5(¢), Ns(cr) and Mj(ev) coverings by d-boxes are
replaced by coverings consisting of the cylindrical sets V; with |i| = n.

By definition, this multifractal formalism does not distinguish between  on R? and
P on I,. On the one hand, this allows the use of symbolic dynamics, which is most
effective [BR, CM]. On the other hand, it lacks geometrical relevance since 7 is not
involved.

This relevance is provided by the approach proposed in this thesis. Compare the
proofs of our main theorems 2.3 and 3.3 and also example 2.10.

All CMF's have some regularity properties in common. A first one is the following:

Lemma 2.2 Given any measure i, substituting the condition ‘u(B) # 0’ in the
definition of S5, N5 and M; (see definitions 1.4 and 1.7) by the condition ‘BNK # 0’
will not affect the values of T(q), T(q), F™(a+) and F~(a—).

This might be important in numerical simulations. In particular for ¢ = 0:

Corollary 2.1 The boz dimension of the support of any measure p equals
o (K) = T(0) = Dy

and dyex(K) ezists ezactly when T(0) is grid-regular.

Proof Let B denote a §-box. Then, since BN K # () is a stronger requirement than
1(B) #0,

Silg) < Zwu((B)l)“

BNK#
Nifa) < #{B:BNK#0, u((B)) > 0%
M) < #{B: BNK #0, p((B)) < 8"},

On the other hand, if BN K # () holds, then by the very definition of the support
of a measure

1((B)y2) # 0.
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Thus, there exists Cp € Gg2 and Dp € Gos, i.e. with nonvanishing measure, both
meeting (B); . Since

(Cs)y C(B) , (Dg); > (B)s,

and at most 2¢, resp. 5¢ 6-boxes B can share the same fixed C' from G'sj2 as Cp Tesp.
the same fixed D from Gy; as D, the argumentation of the proofs of propositions 1.5
and 1.8 applies. ¢
Often there exist 7 numbers \; €]0,1[ (i = 1,...,r) such that:

diam;

<Ni=N N
diam\'_)\1 Ai )

n

for all words i =4y ..., € I. If this is the case, the Cantor set and any resulting

CMF will be called contractive with Ay,...,A,. A sufficient, but not necessary
condition is

diamV,;

P diamV;

where the supremum is taken over all finite words i.

=)<l (j=1...r),

Lemma 2.3 If the CMF (7} py,...,p,) s contractive with \y,..., A, then

_ logp;
F(a)= -0 Yo > (= max g
For the proof as well as for later use certain sets .J; are needed. Assume that
numbers A; €]0,1[ (i = 1,...,7) are given. Roughly speaking J; is the set of all
words ¢ with A; ~ 6. It will be constructed recursively. Fix ¢ > 0 and start with
J(1) :== I,. Suppose J(m) has been constructed and consider an arbitrary word
i=1p...1y, from J(m). If A; < § then let i be a member of .J(m + 1), otherwise let
ixk, (k =1,...,r) belong to J(m+1). Doso for all words of J(m) and add no further
words to J(m+1). This defines J(m+ 1) uniquely. Since all \; < 1, J(m) = J(mg)
for large enough mg and all m > my. This set of words is the desired J;. Due to its
construction it has the following property: provided § < min(\y, ..., A,),

Js ::J(mg):{i:il...in el: )\L§(5<)\11)\“_1} (24)

Moreover, J; is tight [Hut], i.e. if i is contained in J; then no word of the form i x k
(k # nil) will belong to J;—or to say it positively:

i#jeds = Ik <min(i [j]) : ik # i (2.5)
The latter will be abbreviated by i#;j. Also of importance is that J; is secure, i.e.

KcUV (2.6)

i€Js
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Equivalently, ‘secure’ means: for any j € I there is n € IN and i € J; with
i=(j_In). Note that n and i are unique because Jj is tight.

Proof of Lemma 2.3 For simplicity assume diam(V) =1 (Prop. 1.5). Let a >
and set A = min{),..., \.}. Fix ¢ > 0 such that o — > (. Take §€]0, A /%]
and B € Gs. By (2.6) there is i € Js s.t. V; and B meet. Since diamV; < A; <4, V;
is contained in (B);. So, observing (2.2) and (2.4),

w(Bh) 2 pi2 A" 2 (A0)"° 267
and Mj(«) = 0. This holds for small enough 4, leading to F~(«) = —o0. The proof
is complete, but let us draw some further consequences. First, a* < § < o0, which
calls for an application of lemma 1.17. Moreover, since p((B);) > 0* for all B,
S,;(q) < #Gg 09 = 55(0) 09

for ¢ < 0 and

1 log &
T(q) < lim sup 2B5(0) + vrlogd

T(0) - qa.
s o (0) - ¢

Since T'(0) < d, T(g) must be real. By proposition 1.19 D, increases as ¢ decreases
to —00, and because o > f is arbitrary, the generalized dimensions are bounded by

T T(0)—gp
Dow= lim D= lim L9 ¢y TO=0F_
g——00 g—-00 ] — g~ g-o0 1- q
This is summarized in the following corollary. o

Corollary 2.2 If the CMF = (m; py,...,p,) is contractive with Ay, ..., A, then
T is the Legendre transform of F™, real-valued, convex and continuous on all of R.
Moreover,

0< D <D_x<f

with § from lemma 2.3.

Considering corollary 2.7 these bounds cannot be improved within this generality.
To relate this result about our fractal formalism with the one presented in section 1.1,
it should be referred back to the example 1.1: the former singularity exponents 7
are infinite for negative ¢, even for contractive CMFs. So these infinite exponents
do not reflect a geometrical property of the measure p, such as the occurrence of
arbitrarily large local Holder exponents, but a defect in the method of measurement.
Below a CMF will be constructed for which also the former spectrum f(c) does not
provide the intended kind of information.
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Example 2.1 (Old Spectrum f(c) versus New Spectrum F(a)) Given

r>2 (p1,-..,p) and A €]0, (r +2)7'[, a CMF on [0,1] will be constructed with
log\’

This f makes one believe that there should be local Holder exponents of arbitrary

large size. However, the new formalism, which is considered to represent local be-
haviour in a more accurate manner, yields the grid-regular

_log(S,00)
—log A

(@) = dyx(K) =

T(q) YgeR

for this CMF (theorem 2.3). This agrees with the geometrical intuition involved
in the construction of the multifractal to be carried out below. Theorem 2.6 then
establishes the grid-regular F as the Legendre transform of T’ (see also Fig. 2.1).

0.6 f

ul

0.2 0.4 0.6 0.8 1

Figure 2.1: New and old spectrum for a CMF constructed in example 2.1 withr = 4,
p1=2/3,p2=1/8,py=1/8, ps = 1/12, A = 1/10.

Start with V3 = [0,1]. In each step of the construction r disjoint, closed subintervals
Vism of V; will be chosen, each of length A+ and carefully positioned. Assume that
V; has been constructed. Write n for [i|. Set V. to be the closed interval of length
A" which has its left boundary point in common with V; (see Fig. 2.2). Since this
choice remains the same through all stages of the construction, the interval with left
boundary point in common with V; and length \"** is V;, where j equals i followed
by k letters 1. Thus, the construction finished, V; will by disjointness carry exactly
the measure p; - pi*. This is very useful to know: since the other subintervals V.,
-y Visr are arranged without a common rule, it is impossible to predict where else
exactly in V; one will find points of the support K of p. To define the remaining
r — 1 subintervals choose first r — 2 disjoint closed subintervals Vs, ..., Vi. of Vj.
Since A(r—1) < 1—3), it is possible to arrange them in a way to leave a subinterval
of V; of length greater than 3 - A" at one’s disposal, which intersects none of the
so far constructed Vi, (m # 2) (see Fig. 2.2). Thus there is /; € IN such that
[(l; = DAL (I; + 1)A™] lies in V; and meets none of Vi, (m # 2). Define

Vi 1= AT = AR (1, AT gtttk
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where k, has to be chosen large enough to satisfy the inequality
e < Yo,

Then the V},,, are disjoint and the measure of B; := [(l; — 1)A™*!, ,A"*![ amounts
exactly p; - p¥". The construction is complete. Moreover, corollary 2.4 applies with
Ai = A yielding the announced T'(g).

Finally let us calculate f~(a). Tet 6, = A®Y. Fix a > 0 and take n > a,
n € IN. For each i with [i| = n the d,-box B; carries by construction the measure
Dit P < 8, Since B, lies in V] these boxes are mutually disjoint. So, their number
satisfies

my, (@) > #I, ="

and with corollary 2.1

_ . logmy, (c) log 7
>1 —————= > ———=T(0) = dpx(K).
e Ty —logd, — logA (0) = dx ()

The reverse inequality follows immediately from lemma 1.9. O

Figure 2.2: Construction of example 2.1.

2.2 Iterated Function Systems

One way to set up the construction of an r-adic Cantor set is to use a set of strict
contractions (wy, ..., w,) of R%. Fach w; possesses a unique fixpoint. Thus a suffi-
ciently large open ball O satisfies w;(0) C O for i =1,...,r. Letting

Vir:=0 and Vi:=w(0):=w;0...0w; (0) (2.7)
yields Vg = w;(0) = w;(Vy) C wi(0) = V;. Of course the diameter of V; tend to
zero with |i] — oo, moreover, the resulting r-adic Cantor set is contractive with

A = Lip(w;) = sup [wifz) ~ wily)|
aty o=y
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This kind of construction is called an Iterated Function System, for short IFS.

It is essential to regard the IFS from the point of view of the contraction theorem
[Hut, Bar, BEH]. The family K of all nonempty compact subsets of R¢ becomes
a complete [Falcl, p 37] metric space when supplied with the Hausdorff metric
(ie. p(4, B) = sup{dist(a, B),dist(b,A) : a € A,b € B}, where dist(z,4) :=
inf{|z — a| : @ € A}). The set mapping

W:Aw U w;(A)
i=1

is contractive since p(W(A), W(B)) < max{\,..., A} p(4, B) [BEH, p 12]. Hence
W possesses a unique fixpoint in K and for any choice of a compact set A the
sequence W"(A) converges in Hausdorff metric to this fixpoint. If one chooses A to
be O, then W"(A) = K,, D K (see (2.1)) and hence

p(K, W™(4)) < max{diamVj : i € I,} < (max{)\y,...,\})" - diam(V,a) — 0.
Thus the fixpoint of W is just K. Moreover, the completeness of K is actually not

needed, since the fixpoint can be explicitly constructed (see also [Falcd, p 114]).
However,

K = Uw(K) (28)
i=1
and K only depends on (wy, ..., w,) and not on the choice of O. This is expressed
by using the notation
K=(unewd = e tipy by, 29)

The above construction by K,, = W"(O) gives an approximation of K ‘from above’,
which can be realized on a computer screen. There are other ways to get a ‘picture’
of K: choose i € {1,...,r} arbitrarily and consider A = {a;}, where q; is the fixpoint
of w;. Obviously g; is contained in W"(A) for all n. Hence it lies in the closure of K,
which is K itself. By (2.8) the sets 1" (A) form an increasing sequence of subsets of
K. Since they converge to K in the Hausdorff metric, their union must be dense in
K. This gives a deterministic algorithm for ‘drawing’ K. For applications Barnsley
[Bar] is a good reference.

To get a random algorithm choose an arbitrary probability vector (pi,...,p,) and
supplement the [FS K to a CMF. Then pick i, = iyis... € Iy at random according
to the distribution P, i.e. Pli = I] = p; for all k. Finally take any # € R* and
define

Ty 1= w;, 0... 0w, (2).

By the Ergodic theorem (see [BEH, p 6]) the average visiting time of a box B (i.e.
1/n-#{zy € B : 1 <k < n}) then approximates p(B) for every choice of z and
P-almost every i... As a consequence x,, tends to K (i.e. dist(z,, K) — 0) and K
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is contained in the closure of the union of all x,. From this it is easy to derive a
random algorithm.
Note that in contrary to z,, the sequence

Yn = Wiy O...0W;, (y)

converges to m(i,) (since gy € Vj;_jn)) for any choice of y € O and any i,. An
illuminating way to see the difference between the forward and the backward orbits
is to translate the corresponding iteration into a dynamical system on the codespace.
For the choice z =y =7(j_) € K the sequence of infinite words

L0
(ininfl o 1211]1]2]3 i -)nE]N
is by = mapped onto the sequence (z,)nem, while

(ilig ool 1inJ1jaJ3 - - ')"E]N

is mapped onto (yy,)new- The first one has almost surely fluctuating initial segments,
while the second one obviously converges to i, in the product topology.

More can be said about the approximation of y. The space of all probability mea-
sures with compact support can be supplied with a metric which induces exactly
the weak topology [Hut, p 732]. The CMF = (wy,..., w1, ..., py) is the unique
fixpoint of the contraction map

T
M: V)—)Zpi-’wi*l/
i=1
on this space [Hut, theorem 4.4. (4)]. Thus starting with any probability measure
fo with compact support, the sequence p, := M™(po) converges weakly to p, Le.
tn(E) = p(E) for all Borel sets E. Moreover,

.
W= Die Wikt (2.10)

i=1
which is the only fact concerning M which will actually be used later. For a final
remark consider the deterministic algorithm presented above and choose 19 = d()
(Dirac measure at ). This results in 1, = Yer, Di - Ouy(z), provided that the

i

contractions wy, ..., w, are injective. If in addition the sets w;(O) are mutually
disjoint and the maps w; are open, then for any word i
W) = (2.11)

For a proof choose # € O and take a word j with [j] > |i|. If j#i (2.5) then w;(O)
and w;(0) are disjoint open sets and hence w;(x) is not contained in V;. If, on the
other hand, j = i * k for some word k, then w;(0) is a subset of w;(0) and w;(z)
lies in V. For i, = M"(6(,)) and n > |i] one obtains 11,(V;) = pi. )
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2.3 Spectrum of Self-Similar Multifractals

In many publications the geometric and multifractal properties of self-similar sets
are studied. They are of interest for their own as well as for applications. See
[Faled, Bar, Mor, Hut, Bed2, CM, HJKPS, HP, GH1, V1, TV]. There is a simple
formula for the singularity exponents of the corresponding CMF, which is already
well known. But as far as we are aware of it, a rigorous proof still awaits to be
written down. Thus this section is considered an important contribution in this
field. It provides a proof of the mentioned formula under slightly more general
conditions and an application to self-similar measures.

Let (wy,...,w,) be a set of contracting similarities of R with ratios Ay, ..., A, i..
A €]0,1] and |w;(z) —wi(y)| = Ai-Je —y| Va¥y € RY (i = 1,..., 7). Assume further
the existence of a nonempty open bounded set O such that

w(0)CcO (i=1,...,r) and w(0)Nw;(0)=0 (#j). (212)

This property was termed open set condition, or OSC for short. O will be called a
basic open set. Any r-adic Cantor set K constructed using an IFS as above is said
to be self-similar [Hut]. Moran [Mor] was able to give the box dimension as well as
the Hausdorff dimension (see page 52 for a definition) of self-similar sets: they both
equal the unique D, which solves the equation

YAl =1L (2.13)
i=1

To obtain this result one has to use the construction of K provided by (2.7): due
to the OSC the sets V; with fixed |i| have the same shape and cannot overlap. This
property will also be used in the calculation of the singularity exponents.

Definition 2.4 Let wy,...,w, be similarities of R with ratios \; €10, 1[ and such
that the OSC holds. Let (py,...,p:) be a probability vector. Then the CMF p =
(wy, ..., wep1,...,pr) is called a Self-similar Multifractal (for short: SMF) with
ratios Ay, ..., A, and probability vector (py,...,p,). It makes sense to use the ab-
breviation

= A, Ay D)

since the spectrum of  is determined by these numbers.

Note that the distribution of a SMF y is under excellent control since (2.11) holds.
To compute the spectrum of a SMF one could deduce a recursive law for S5(¢) from
the invariance of y (2.10), similar as it is done to obtain the box dimension of K
[Bed3, BEH, BEHM, Ma2, Mal]. The intuitive argument is the following [HP]:
The sets Gy are split into G(i) == {B € G5 : B C V;} (i =1,...,r). The invariance
of y then supports the approximation

2D SNTIIINES S ST qusm

i=1 B'eGjs(i) i=1 BEGs ),
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The boundedness ¢! < S5(g)8” < ¢ for 6€ [\, 1] (2.18) extends to [\, 1] by

Z PN (Siya (@)6/0)7).

and inductively to |0, 1], provided 7 is chosen such that
Z PN =1 (2.14)

Thus T(g) must equal the unique solution of (2.14). By corollary 2.1 this formula
is a generalization of (2.13).

The calculation above is certainly valid when the similarities w; respect some mesh
(i.e. when d,-boxes are mapped onto d,,,1-boxes for all §, of an admissible sequence).
This is indeed true for the middle third Cantor set. But in general, serious difficulties
seem to arise when one is obliged to estimate not only S5(0) (a simple counting task
leading to dyoy(K)) but to treat Ss(q) for ¢ # 0. In particular it is troublesome
to establish rigorously the recursion sketched above. It seems that this was not
recognized in [HP].

However, we prefer a different approach: We compare the covering by boxes B from
Gy with the covering by cylindrical sets V; with i from J;—with the approximation

Zﬂ q(;WNZ# ql;v quq)\“r

BeGs i€Js i€Js

in mind. When 7 is chosen according to (2.14) the last sum equals exactly 1 for
all 6, and the value of T' is determined. This procedure has the advantage of not
using the maps w;. Only some control about the shape of V; and about the possible
extent of overlapping is needed. Thus the obtained result is valid for multifractals
arising from a more general construction than SMFs, such as example 2.1. As a
further condition the intersection of V; and K must not be unnaturally small. This
is necessary for the same reason which brought us to work with 44(B); of boxes with
u(B) # 0. Consequently, it is only needed in order to deal with negative .

Denoting the open ball with center a and radius p by U(a, p) this reads as follows:

Theorem 2.3 Let = (m;p1,...,py) be a CMF, let py > py > 0 and let Ay, ..., A,
be numbers from )0, 1] such that for every word i € I there is a point z; in V; with

U(Ii, 2ﬂ1)\1) C ‘; C U(]?i, p2/\i)‘ (215)
Uz, 2010) N Vi =0 for all j # i with |i| = j], (2.16)
(U i, prAs)) # 0. (2.17)

Then T(q) is grid-reqular for all ¢ € R and equals the unique solution 7y of (2.14).
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Proof

o) The functions = + pIA? are strictly monotonous decreasing with range R*.
Thus (2.14) has exactly one solution, which will be denoted by 7. Also for
later use set

A=min{A, ..., A} Xi=max{,..., A\ ) (2.18)

Note two properties of J5, which follow immediately from its construction.
From (2.5) and (2.6):
YopiAT=1 (2.19)

i€Js
From (2.16) and V; C Vj, j, (n < |f]):

Ulai, 2pA) N U (5,2p105) =0 for all i}, (2.20)
in particular for all 7 # j from J; by (2.5).
Throughout the proof the assumption 4 €]0, A[ is made. First let ¢ > 0.

i) Take B€ (. For the sake of shortness write J5(E) :={i € J; : ;N E #0}. It
is an important fact that #.J5((B);) is bounded by a number which depends
neither on d nor on B. To establish this bound it is enough to have numbers
ps > p3 > 0 such that the intersecting sets V; have diameters bounded by
ps - diam((B);) and contain mutually disjoint balls with radius greater than
p3 - diam((B);): just remark that

Vol(U(0,1 + p))
Vol(U(0, ps))
But, due to (2.15), (2.20) and (2.4), one may choose py = 2py(3v/d)~" and

p3 = 4p A(3v/d) ™1, Now let us proceed to the estimation of S5(q) from above.
Since Jj is secure (2.6)

> ) < (b max p(1) <bt- 3 a0

5B s((B)) (B

#J5((B)1) < by = (2:21)

Taking the sum over all B € G yields

:Z,u((B )1)? < by Z Z q<b1‘1b22u

BeGs BeGs ieJs((B) ) i€Js

Here the constant by is obtained from (2.21) by interchanging the roles of (B);
and V; and by setting p, = 3v/d(4p12) " and p; = (2p)~", yielding for every
word i € Js:

#HBEGs : ViN(B) # 0} =#{B € G, : i€ Ii((B)1)} < ba-
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Finally p(V;) must be compared with pj. This is trivial for SMFs, but in
general these two numbers are not equal. Take j € J;. First 7=%(V}) is
estimated: assume m(k,) € Vj. Since J; is secure (2.6) there is an integer n
and a word i € Jy with i = (E;o|n) Hence n(k,) € VNV,

(V) C {k € Lo : In € N with (ky|n) € J5(V;)}

and

p(Vy) =P (V)< Y me

i€J5(V;)
By replacing (B), with Vj and by setting py = po(200) ™", ps = 21 Ay * (2.21)
provides a constant by with
#75(V;) < bs.

Consequently

p(V;)" < (bs - max p)* <bs? > pt.
- Hs(7) icJs(V;)

Similar as above one obtains
Y I’(VJ_')q < b! Z Z pi? < bgbs Z P
jels §€7s i J5(V;) i€Js
Summarizing,
Ss(q)d” < by 9byby Tt Z pild" < by bybs ey Z PN = by yby ey
i€Js i€Js

Note that by, by, b3 and ¢; = max{1,A™"} do not depend on 4.

ii) Now Ss(q) will be estimated from below. Take i € Jy where &' = (3py)716.
From 0 # p; < p(V;) follows the existence of a box B; € Gy which meets
V;. Since diam(V;) < 2pp); < 6, the parallel body (B;); contains V; and thus
pi < p((By)1). Moreover, any fixed d-box can meet at the most by (2.21) sets
V; with i € Jy. Hence

Yo pi <by Y u((B))!

i€y BeGs
and by (2.4)
Ss()d" > bt Y pifd? > bi'te Zpﬂ)\ﬂf
i€y i€y by’
where ¢ = (3py)” - max{1, A"} is independent of d.
iii) From i) and ii) follows immediately
N log coby* < log S5(q) log by %hybs ™!

—logd — —logé =7 —logd

for all sufficiently small 0, i.e. T(g) is grid-regular and equals .
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Now let ¢ < 0.

iv) Again let us give first an upper bound of Sj(g). Take B € Gj. Set &' = (3p)~16.
To the contrary with i) a V; has to be found with smaller measure than (B);.
This is indeed the easier task since p(B) # 0 due to our definition of T'(g). By
(2.6) there is ¢ € Jy such that V; meets B. As in ii) V} is a subset of (B); and
thus 0 # p; < p((B)1). So

Ssl) =3 w((B))! <bs ) pif
BeGs i€l
since any fixed V; (i € Jy) meets at the most some constant number b (2.21)

of boxes from G5. With ¢, = (3p,)7 - max{1,A™"}

Sg(q)(w S 6563 Z piq)\ﬂ = 6563.

icly

v) Take i € Jy with 0" = 3v/d(p;2)~'4. Only here the precondition (2.17) is used,
which implies the existence of a box B(i) € G which meets U(x;, p1);). Since
diam(B(i))1 = pAd" < p1A; by (2.4),

(B(i))1 C U(z;,200) C Vi

The first idea now is to continue with p((B()):1)? > p(V;)?. But here the

method of i) cannot be applied to compare p(V;) with p; ‘in the average’
1((B(2))1) does not have to be bounded by just some p;, but with p; itself.
However, this is possible since

T (U(a3,200)) € (ke € Lo = (ool [i]) = 1}
by (2.16), leading to
0# p((B@)) < p(U(x;, 201)) < pi

This time (2.20) is used instead of (2.21) to conclude that B(i) # B(j) for
i#;. From this

Yo' <Y p((Bh)" = Ssq)

i€Jsn BeCs
and
Sg((])(V 2 Cyq Z piq/\ﬁ = (4.
i€Tn
vi) From iv) and v) follows the assertion of the theorem for negative . o

A first and almost immediate application of theorem 2.3 is the one to CMFs on the
real axis R:
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Corollary 2.4 Let 11 be a CMF on R such that for all n € IN the cylindrical sets
Vi (i € I,,) are intervals with mutually disjoint interiors, and such that

diam(V;) = ; - diam (Vi)

for all words i. ThenT'(q) is grid-regular for all ¢ € R and equals the unique solution
7 of (2.14).

Proof Set ¢ := diam(V;y) and A, X according to (2.18). Take an arbitrary word
i. Among Viis1, ..., Visrer there is at least one say Vij,;, with distance at least
AQ)\ic from the boundary of V;. Choose m large enough to ensure <l /2 )
and set j == jijy * 1...1 € I, Then Viy; C Vi, and diam(V;;) < X" Aie <
1/2- Az)\ic. Thus it is enough to choose z; € Vj,; and py = ¢, p1 = c/2- Az, since
I/;_'*j C U(Ii, plAi)’ Dixj §é 0 and diSt(]?i, d1 D > 2p1_)\£. &
With the necessary care theorem 2.3 provides the singularity exponents of self-
similar measures: The first two preconditions are obviously satisfied due to the
OSC. Moreover, also the third one can be verified provided that there is a basic
open set O with ONK # (). This condition was termed strong 0SC, for short SOSC
[BG].

Lemma 2.5 Let p=((A1,..., Aiip1, .., pr)) be any SMF. Then the conclusion of
theorem 2.8 holds for ¢ > 0. If, in addition, the SOSC holds, then this is even true
forqeR.

Remark A simple calculation even shows that the SOSC implies (0) = 1 and
1#(00) = 0. But still K need not be a subset of O.

Proof The proof of theorem 2.3 reveals that precondition (2.17) is only needed
for negative ¢. So it only remains to verify (2.15)-(2.17) under the assumption
KNO # 0. Take z = 7(iy) lying in O. Since O is open and bounded there is
p2 > pr > 0 such that U(z,2p;) C O C O C U(x, pp) and an integer n such that
X' diam(0) < py. For j = (i, |n) the set Vj contains z, has diameter ); - diam(O)
and is thus a subset of U(, py). Letting z), := wy(x) for all finite words & one finds

Visj = w(V;) Cwg(U(x, p1)) = Uz, ),
hence pu(U(zg, prAy)) > pisj # 0 and (2.17) is established. Note that

Ulzg, 2mAe) NV; Cwg(0) Nwy(0) =0
for all k#i, giving (2.16) for this choice of 2;. (2.15) is evident. O
Two simple examples of SMFs with the SOSC are the following:

Example 2.2 (A Class of Totally Disconnected SMFs) Take a self-similar
set K = (wy,...,w,) and assume that the sets w;(K) (i = 1,...,r) are mutually
disjoint. Then K is totally disconnected. Moreover, the union O of all U(z,e) with
center z in K satisfies the OSC for ¢ < 1/3 - inf{dist(w;(K), w;(K)) : i # j}, due
to the invariance (2.8) of K. O even contains K. O
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Example 2.3 (SMFs on the Real Axis) For SMFs on the real axis (d = 1) the
situation is even trivial: K is uncountable provided r > 2 and since the boundary of
any open subset of R is countable, K must intersect O. Note that there are SMFs
on IR with infinitely connected basic open set. Corollary 2.4 cannot be applied then.

O

At the time when this thesis was submitted, it was not clear whether the OSC
implies the SOSC in general. The state of knowledge was the comparison of the two
conditions by [BG]. Therefore it was opportune to present a geometrical situation
in which the OSC does imply the SOSC. Two examples shall illuminate the problem
first.

Example 2.4 (K Lying on the Fractal Boundary of O) Let r =4 and
wi(r) :=1/3- (x — @) + a;

with a; = (0,0), ay = (1,0), a3 = (1,1) and a4 = (0,1). Set O :=]0,1[*\K where
K = (wy,...,wy) as usual. O is of course open and bounded and K lies on its
boundary. As will be shown it is even a basic open set for (wy, ..., wy).

Take j € {1,...,4} and assume there is a point = € O such that w;(z) € K. Of
course w;(z) € w;(0). Since wi(K) C wi(O) (i = 1,...,4), which are mutually
disjoint in this example, w;(z) must by (2.8) be contained in w;(K). The bijectivity
of w; now implies € K, which is a contradiction to z € O. Thus w;(O) is a subset
of J0,12\K = O for (j = 1,...,4). Concerning the disjointness: w;(0) Nw;(0) C

w;(]0, 12) Nw;(]0,1[%) = 0, provided i # j. This proves the claim.

Example 2.5 (K Lying on the Smooth Boundary of O) Take d>2,r =2
and
wy(z) :=1/3-2, wolz):=1/3-z+(2/3,0,...,0).

Let C denote the middle third Cantor set on IR (see Ex. 1.1). Then K = (wy,wy) =
{(2,0,...,0) : x € C}, since this set is compact and invariant. Obviously, K lies
on the boundary of the basic open set O :=]0, 1[%. O

Thus it is quite possible that K has no point in common with a particular basic
open set O. But the above examples support the intuition that when this happens,
either O has a highly irregular boundary, or the dimension of the embedding space
IR? has been chosen too large. Moreover, a better chosen O satisfies the SOSC. In
applications it is often possible to find a basic open set O C IR? with quite regular
boundary: O is the union of a finite set of polyeders, i.e. its boundary 9O lies on
a finite union of (d — 1)-dimensional hyperplanes. We shall say then that 90 is
piecewise linear. Our aim is to prove that such a basic open set implies the SOSC
und is thus sufficient for the determination of T'.
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Lemma 2.6 Let (wy,...,w,) be a set of contracting similarities with basic open set
O, the boundary 0O of which is piecewise linear. Then the SOSC holds with some
set O,

Proof The case r = 1 is trivial, thus assume r > 2.

i) Let H be the linear subspace spanned by K and denote its dimension by d'. Due
to its minimality H' is invariant under w;: choose d’' + 1 points of K which
span H'. By the invariance of K (2.8) their images under w; must again be
contained in K which is a subset of H. They span a hyperplane of dimension
d'. Thus wi(H)=H (i=1,...,r).

ii) Now it will be proved that the SOSC holds for K as a subset of H. Denote the
interior of H N O with respect to H by 0. Note that K is contained in the
closure O of 0" with respect to H, since K C O and since O' is perfect. We
claim that 0" and K have a point in common. Assume the contrary. As a
subset of 0y, K must be contained in a finite union of linear subspaces Ej,
(k=1,...,N) of dimension d" = d' — 1. As it will be shown, K lies then in a
linear subspace of dimension less or equal to d” < d', in contradiction to the
definition of H.

Assume first a j and a point z of K such that z lies in Ej, but in no Ej, with
k # j. Since x has positive distance to Ej, (k # j), there is a finite word ¢
such that V; contains & but meets no Ey (k # j). From

wl(K) C ‘/;_'QK C Ey

follows that K lies in w;~!(E}), a d"-dimensional linear subspace. Otherwise,
i.e. if there is no such x, K must be a subset of the union of all Ey, N Ej,,
where multiply occurring sets have been removed. Inductively the same argu-
mentation as just given can be applied or K can be found to be contained in
Ey, N...NE},. This is a finite union of points, in contradiction to r > 2.

iii) The desired basic open set O*, which intersects K, is now readily constructed.
Denoting the component of y € R? in H by h and the one perpendicular to
H by ht, set

0 ={yeR!: heO and |h*| < 1}.

(Compare Ex. 2.5.) Certainly O* is bounded and open, and KNO* = KNO' #
(0. Due to the shape of O and due to the invariance of H the OSC of O carries
over to O' as a subset of H. Since H~ is invariant as well this establishes O*
as a basic open set. o

Summarizing, the author was able to give three conditions, each sufficient to imply
the SOSC: d = 1, the sets w;(K) are mutually disjoint, or dO is piecewise linear.
However, after this thesis was submitted the author’s attention was brought to [Sch],
due to which the SOSC holds for any SMF.
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Corollary 2.5 Let it = ((Ay,..., My, -, 0y)) be a SMF in RE. Then T(q) is
grid-regular for all ¢ € R and uniquely determined by the equation

YAl =1, (222
i=1

Figure 2.3: The typical feature of the generalized dimensions D, of a SMF, plotted
as a function of ¢. Herer =4, A\ = ... =\ =1/6, p; = py = 1/10, p3 = 1/5 and
Pe= 3/5

Formulas related to (2.22) have been found previously, but with less generality: In
[HJKPS] differentiability of the spectrum f is assumed. In [HP] the formula is
derived only for positive ¢ and the argumentation is only valid when the similarities
respect some mesh (compare page 40).

From (2.22) the spectrum F follows immediately by an application of theorem 1.2.
To give as much information as possible we set:

) 1‘10 i ) )\DIO i
log p; L Elp & o igl i 08P
n Qg :

mi! Q. = max 10gp1

. 1= 00—

=t log X > pilog )
i=1

i=1yy log /\i!

XT: AP log \;
=1

where D is the box dimension of K = supp(u) and satisfies (2.13). Thereby the var-
ious values of a have interpretations as particular ‘local Holder exponents”: «a,, and
Q_o as the Holder of the most probable and the most rarefied points, respectively,
and a; and ag as the Holder occurring most probably with respect to the underlying
measure f and the D-dimensional Hausdorff measure, respectively. While the first
two interpretations follow from the theorem below, see (2.25) or [EM] for the other
two.

Furthermore, we denote by 71, and 7, the unique solutions of the equations

Z AT =1 resp. Z A7 =1,

pi=AT® p{:)\?ﬂx,

where the sums are taken over all numbers i € {1,...,r} which satisfy the indicated
condition.
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Theorem 2.6 (Spectrum of SMFs) Let i be a CMF, for which (2.22) holds for
all real q. Then

—00 a < O
TN = O
F(a) = inf (T(g) +ga) = § T(q) =qT'(¢) @=-T'(q) €la, 00
"2 O =0_
—00 > 0y,

and F' is grid-reqular everywhere provided T is. Moreover, F(«) is continuous and
strictly concave in [, 0—oo] and C™ in |, a—oo|. Its graph touches the internal
bisector of the azes at oy and attains the mazimal value D at op. Furthermore, the
2 X 2 equation system

-
Il
—

—

&

£ ()
Ern()(2)' 0 -

is for every a €]t o[ uniquely solved by v = F(a), ¢ = F'(a).

(2.23)

|
o
—
=3
=

@ o
os
Flo_ s
os
0s

wab,
Fla
v

Figure 2.4: The typical feature of the spectrum F(a) of a SMF. Here r = 4, \; =
oo =M=1/6,p; =p,=1/10, p3 =1/5 and py = 3/5 as in figure 2.3.

See figure 2.4 for the feature of a typical spectrum. For an intuitive explanation of
the back ground of (2.23) it must be referred to the remark on page 86, where the
involved notation is at hand.

Corollary 2.7 Let it be a CMF, for which (2.22) holds for all real g. Then Dy =
D= dbox(K)y D1 =Qp and

Dy = .}LIEOD‘? =05 <Dy<a o= qEIPqu =D_,.
Moreover, D, is either constant or strictly decreasing and continuously differentiable.

Proof Write ¢; = ¢j(e) = log(p;) — alog(\;) (i = 1,...,7) for short. The ¢; are
strictly increasing functions of o with zeros log p;/log A;.
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o) First the trivial case. When all zeros of the ¢; coincide, then p; = AP where D is

the common zero. Necessarily D = T(0) = dyoy(K) by (2.22) and corollary 2.1.
From (2.22) follows T'(¢q) = (1—¢)Dand ayy =y =g = 0_oo = =72 = D.
Theorem 1.1 gives F(a) = T(q) — ¢I"(q) = D for a = D = =T"(q); (2.23)
is trivial and D, = D for all ¢. The grid-regularity as well as F(a) = —o0
(a # D) follow as in iv) below. In this case there is nothing more to prove.

From now on the case o) is excluded. Equivalently oy, < s, may be assumed.

i) First it will be shown that (2.23) is solvable exactly if a lies in the range of —T",

and that it determines F and F'. Assume first that (7p,¢g) solves the system
for some fixed «, and rewrite it as:

,
le?DAZU*QQO — 1
p
r . T _
TP g = a LA P log
1= 1=

Consequently T(qo) = 70 — ago, @ = —T"(go) and with theorem 1.1 F(a) =
T(q0) — 90T"(q0) = 7o and F'(a) = gp is obtained. Thus the solution is even
unique. On the other hand, it is now easy to see that, if &« = —T"(¢), then
(T(q1) + aqi, ¢:) provides a solution of (2.23).

ii) Now let us determine the range of —=T". Instead of using the implicit formula

arising from (2.22), which is troublesome to handle, it will be shown that (2.23)
is solvable exactly for & €]y, a_o[. Consider the second equation (2.23.b).
For fixed « the function ¢ — ¥ ¢;e%9);” is strictly increasing. For a < ay,
(a > a_y), however, it is strictly negative (positive), since case o) is excluded.
Hence (2.23.b) has then no solution. From now on fix a €|au, @_o[. Then
¢; < 0 < ¢ for some i and j, and a unique solution ¢(7) of (2.23.b) exists.
By the implicit function theorem ¢(7) depends continuously differentiable on
7 since ¥ c2e%\] # 0. Now turn to (2.23.a) and consider the strictly positive
function h(y) = ¥ e“?M)], Its derivate satisfies
r

W(y) = Ze“"m))\] log(;) + Zec‘q("’))\;’ciq'(q') <logX-h(y) <0,
i-1 i-1
since the second term vanishes by definition of ¢(7). So, h is strictly decreasing
and the mean value theorem of calculus implies for y < D:

h(7) = W(D) = (D = 7)(=H'(,)) > log(1/3) - (D = 7)h(D).
Thus h(y) = 00 (y = —00). On the other hand,
h(D) =Y etPI\P < Y )P = 1
=1 i=1

because ¢(7) minimizes by its definition the strictly convex function ¢ —
Y e)] (y fixed). Summarizing there is a unique v with h(7) = 1 and exis-
tence and uniqueness of the solution of (2.23) is established. Moreover, y < D,
hence F(a) < D.
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iii) As a consequence of i) and ii) the range of —T" is exactly Jau, @_oo[- By

implicit differentiation of (2.22) it is easy to derive the strict convexity of T.
As a consequence D, is strictly decreasing, which is a generalization of the
same result for positive ¢ in [HP]. Furthermore,
. T
Al D = i T = oo

Concerning differentiability of D, at ¢ = 1: Proposition 1.19 applies and
Dy=-T'(1)=a. For g # 1

d (1-9T"(g) +T(g) -

ik s (1= ) (F(a) = a)lpe_pqy)
which converges to =T""(1)/2 as ¢ — 1. Since D, is continuous at 1, it is hence
also continuously differentiable there. The last equation reveals in addition
that the touching of F' and the inner bisector of the axis is of order two,
provided ¢ is taken as the curve parameter.

iv) Turning to the spectrum proposition 1.15 and iii) show that F(«) < F™(a) <

inf, T(q) + ag = —oo for « outside [, @_oo]. The concavity and differ-
entiability follow from theorem 1.1 and the implicit function theorem. The
grid-regularity is a consequence of theorem 1.2. Regarding i) the maximum of
F is discovered by noting that (7,¢) = (D, 0) solves (2.23) for a = ay.

v) So, it remains only to compute the values F(a4y). But by theorem 1.1 F(q) is

continuous in [, @—s]. So the behaviour of the solutions of (2.23) has to be
studied near a.,. For an easy presentation of the proof assume without loss

of generality that
logp;

O = Iog ), o ie{l,....t}

for some ¢ < r. We will consider arbitrarily a €]ay, o + €[ Where € > 0
is chosen small enough to guarantee the existence of ¢" > ¢ > 0 such that
¢ < —¢la) <" (i=t+1,...,r) and ¢x(a) > 0 (k =1,...,t). Denote the
solution of (2.23) by (F(«), ¢(a)). Since F() > 0 (2.23.b) implies

t r
Z )\z(a)ck(a)eck(“)q(“) _ z )\f (a)(—ci(a))ec’(ﬂ)q(ﬂ) <rd'- e—¢aa)
k=1 i~t41
The terms in the first sum are all positive, F(e) < D, and g(a) = 00 (@ | ag)
by iii). Thus
0 < ex(@)g(e) < const - g(a)e™® 1@ @1 0 (a | ay) (k=1,...,1).
On the other hand, ¢;(a)g(@) = —00 (@ | ay) (i = 1 +1t,...,7) is trivial.
Moreover, for reasons of continuity, F(a) = F(ay) and with (2.23.a)

t ; .
1= Y A @anlonta) 4y~ \F@)galanla) y 3 yFlox)

k=1 i=t+1 k=1
From this F(aw) = 7;. A similar argument shows F(a_) = 7. o
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2.4 Examples and Counterexamples

The title of this section speaks for itself. Among other things we treat some easy
cases and contribute to the interpretation of F'() as the dimension of subsets of K =
supp () with ‘local Holder exponent o’. The counterexamples prove the necessity
of the preconditions of some of our theorems and show that the spectrum F' need
not be concave.

2.4.1 Homogeneous Multifractals

In this subsection only SMFs p1 = pu(p) = (M, .-, Arip1, ..., Dyp)) are considered,
where the involved similarities w; are regarded as fixed and p = (py,..., ) as
variable.

No matter how p is chosen, K = supp(p) = (wy,...,w,) remains the same self-
similar set with dy(K) = D determined by (2.13). But—assuming that (2.22)
holds—the spectrum varies with p getting more and more narrow as Dy, = D_q.
Thus the coincidence Dy, = D_ is a special case, which occurs exactly for

pi=p =N,

In particular D, is in this case constant and any multifractal with D, = Dy is
called homogeneous or uniform [HP, HIKPS]. The choice of probabilities p = p*
may be considered to be inappropriate since pi(p*) reveals no structure of K. But
homogeneous multifractals possess some extremal properties and are, therefore, of
theoretical interest. To state the mentioned properties of p(p*) and also for further
use in this section the following definitions are needed: the capacity of a multifractal

w[Y, page 119]:
de(p) = sup inf{dyx(E) : EC K, p(E) > 16},
30

the a-dimensional Hausdorff measure m® (for details see [Falc4, Rog]):

m¢(E) = inf{i(diam(&-))a e fjsi, diam(S;) <e Vi e IN}

i=1
m®(E) := limm?(E) = supmZ(E),
el0 e>0
the Hausdorff dimension dyp(E) of a set E:
dyp(E) :=inf{a>0: m*(E) =0} =sup{a >0 : m*(E) = oo}
and finally the Hausdorff dimension of a multifractal [Y, page 115]:
dyp(p) = inf{dyp(E) : EC K, p(E) =1}.

Note that dyp(E) exists, since m2(E) < e #mP(E) whenever a > 3, and thus
m?(E) < 0o = m?(E) = 0 and m*(E) > 0 = m#(E) = oo.
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Example 2.6 (Maximality of the Hausdorff Dimension of p(p*)) A result
of Geronimo et Hardin [GH1, page 92] reads in our situation as follows:
Assume that p is o SMF and that wi(K) Nw;(K) =0 for all i # j. Then

épi logp;

dp(p(p)) = de(p(p)) = Dy = T——. (2.24)
Y. pilog A;
i=1

The geometric properties of F' (theorem 2.6) imply D; < Dy with equality if and
only if p = p*. As a consequence dyp(p(p)) is maximal for p = p*. O

Example 2.7 (Maximality of the Lyapunov Dimension of p(p*)) Massopust
[Mal, pages 7 and 27] proves, that p* maximizes the Lyapunov dimension A(u(p)) of
the canonical dynamical system ® associated with u(p): ® : K x[0,1] = K x [0, 1]
where -
i
o) = () L2

with g := 0 and y; = p1 + ... + p; (see also [GH1]). Massopust obtains
Ap(p™)) =1 + diox(K).

for y € [y; 1,y

Finally note that

up") =c-m™|x
for some normalization constant c¢. To see this, just check the invariance (2.10)
of m™|k using m? (w;(K) Nw;(K)) = 0 (i # j) [Hut, page 737] and note that
mP (K) €]0, 0].
In the context of this subsection we would like to mention another special choice of
probabilities p;, which works for any IFS with affine maps w;:

_ det (w;)
ZT: det(wi).
=1

;
The associated multifractal is sometimes called geometrical multifractal [Tél]. Grow-
ing structures with an underlying self-similar process [TV] may serve us as a first
example: using only the number of particles in the various stages of the growth, one
may determine ‘mass-indices’ o and corresponding ‘fractal dimensions’ f(«). This
function equals exactly the multifractal spectrum F of the underlying SMF endowed
with ‘geometrical’ probabilities p;. The important aspect is the fact, that there is
no measure needed to find f. Thus, this function characterizes the pure geometry
of the system. As a second example let us consider the case of an IFS, for which the
invariant set K = (wy,...,w,) has positive d-dimensional Lebesgue measure (e.g.
a triangle in the plane R? [GH2, page 11]): choosing ‘geometrical’ probabilities P
leaves one with p equal to the normalized Lebesgue measure restricted to K.
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2.4.2 Explicit Formulas

Most easily an explicit formula for T(g) arises from (2.22) provided that all ratio

numbers are equal, ie. \; = A (i =1,...,7). By simple calculation
1 XT: 1 _Elpiq lOg (p%)
I(q) = ——log (}_pi’) alg) = ——=F——
log A = log A ; il
- 21 i log(p;)

1 T
Flale) =~ 5 (los (X ) +4— =
=1 Di
i=1

So, the shape of the spectrum is independent of A. Multifractals of this kind are
widely used as simple examples ([HJKPS, HP, Falc4]) or as models of phenomena
in nature [V1].

An explicit formula for F(a) can be extracted from the equation system (2.23),
provided 7 = 2. Considering the variables z; = p;%\;" * and setting ¢; = logp; —

alog A; one finds

Cy C1

and Tg =

Ty = .
C—C C —Cy

By taking logarithms

o log(—ca) + (¢1 — ¢2) log(c1 — ¢2) — 1 log(cn)
log Ay log py — log A2 log py

F(a)

for a €]ag,, a_q|, where ay, = logpi/log A < logps/log Ay = a_y, without loss of
generality.

Formulas free from the parameter ¢ have been presented until now only for special
cases [EM, TV].

2.4.3 Atomic Multifractals

In this subsection degenerate probability- or ratio-numbers are considered, i.e. p; = 0
or A; = 0.

Example 2.8 (Vanishing Probabilities) Let
K= Un
n=1liel,

be an r-adic Cantor set (2.1) and take ¢t < r and (pi,...,p,) such that

,
Yopi=1, p>0 (i=1,...0) and p=0 (i=t+1,...,r)
i=1
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Then the product measure on I, = {1,...,r}™ associated with (py,...,p,) has no
longer all of I, as its support, but I, = {1, ..., t}™—considered as a subset of I,.
Thus

o0

supp() =K'= J T

n=1 ie{l,.t}n
which is in general a proper subset of K. Moreover, u = 7P, where P' is the
product measure on I'y associated with (py,...,p;) and 7' is the restriction of 7 to
I',,. Note that with the convention 0° := 0 theorem 2.3 remains valid. O

Thus, allowing degenerated probability vectors just means to extinguish certain sets
in the construction (2.1) of K. In particular if p; = 1, then p is the Dirac measure
at the point m(111...) and hence atomic.

On the other hand, the following condition is sufficient to guarantee that a CMF is
nonatomic, i.e. has no atoms:

Lemma 2.7 Assume that pi is an r-adic CMF, where vanishing probability numbers
are expressively allowed here. Assume, on the other hand, that none of them equals
one. Assume, furthermore, that the first two preconditions (2.15) and (2.16) of
theorem 2.3 hold. Then v is nonatomic.

Remark As a consequence, SMFs with r > 2 are nonatomic.

Proof It is well known that the atoms of Radon measures must be singletons. As
we will see, the preconditions of this lemma imply that singletons are nullsets. Thus
the proof is complete. However, we give the full argument.

i) Assume there is an atom A, i.e. A is measurable, 0 < p(A) < oo and for any
measurable subset E of A either u(E) =0 or u(E) = u(A). An application of
Zorn’s lemma to the set {E C A : E measurable and pu(E) = u(A)} endowed
with the inclusion as an ordering yields a minimal measurable subset B of A
with the same measure as A. By its minimality and the properties of A every
measurable subset £ of B must be a null set.

ii) Every singleton {2} is a Borel set and hence measurable. Moreover, it is a ji-
nullset. To see this note first that 771(z) is a finite set: Take b; from (2.21)
and assume that 7~'(z) contains more than b; infinite words, say i¥) (k =
0,...,b). For sufficiently large m the initial segments (i*)|m) are distinct.
Now take 4 small enough to guarantee |j| > m for all j € Js. Since J; is
secure and tight, there is for every k = 0,...,b a (uni(iue) number ny s.t.
§® = (i%ny) lies in J5. But the corresponding by + 1 sets Vi contain
i.e. intersect the d-box containing z, in contradiction to (2.21). Thus 77%(z)
is indeed finite and hence a P-nullset due to p; < 1 for all 4.

iii) Finally, the fact that every singleton {z} is a null set contradicts the minimality
of B: taking away a point from B yields a smaller, measurable set with the
same measure. Thus there is no atom. &



56 CHAPTER 2. SELF-SIMILAR MULTIFRACTALS

Less trivial is the case where one allows vanishing ratio numbers. Generalizations
of the short example below are immediate.

Example 2.9 (Vanishing Ratios) Consider the IFS w;(z) = 2/2, wy(z) = 1 and
an arbitrary probability vector (p;, p2). The support of the resulting CMF p is

K={0ju{2™ : n € Ny},

and p itself is a linear combination of Dirac measures concentrated at the points
27

o0

p= ) papt - Openy.

n=0
So, this is another atomic measure arising from an IFS.
To calculate T'(q) it is convenient to use the admissible sequence §, = 27". By direct
computation of the measures y((B);)

n—2
Si (@) = "+ p "+ (pr"py+ " ) + Z (pi"p2)"
k=0

= c-p"+ (1 *plqyl

with some ¢ > 1, and

_ | q-logpi/log2 ifg<0,
T(q)= { 0 otherwise.

In this example the formula (2.22) holds exactly for ¢ < 0. Thus, \; # 0is a
necessary precondition in corollary 2.5, since O =]0,2[ is a basic open set for the
above IFS. Note that theorem 2.3 does not apply since (2.15) and (2.17) cannot be
satisfied. But still K may be constructed starting with Vi = [0,1] and using the
IFS as usual. Thus p is contractive with \; = 1/2 and A, €]0,1[ arbitrary, and
corollaries 2.1 and 2.2 apply. Indeed T(0) = 0 is the box dimension of K, T is
continuous and D is bounded by —logp;/log 2.

For later use we note that F equals the Legendre transform of T', i.e.

f0<a< - :
F(a)zF’"(a)z{O if 0 <a <—logp;/log2,

—00  otherwise.

Proof: due to proposition 1.15 F*(a) and F~(«) only take the values —co and 0
with the discontinuities at Dy, = 0 resp. at D_,, = —logp;/log2. Since F < F™,
it remains only to show that F(a) > 0 for @ €Dy, D_s[. Fix such an « and take
an arbitrary % > 0. Choose the sequence 0, = (pp1"){1/) and take n large enough
to ensure §, < (3(1+£))~'2™" (note that p; < 27*). Now there is a unique box B,
in Gy, which contains the point 27", By the choice of n the enlarged interval (B,),
does not contain any other point of the form 27™. Thus u((By)x) = papi” = 6.,
which proves the claim.
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2.4.4 Subsets of Given Local Holder Exponent

The definition of the spectrum F gives credit to the intuition that F(«) is the
dimension of a certain subset K, of K. This set is roughly described by the property
that the measure of a ball with center in K, and diameter ¢ scales as ¢ for ¢ | 0.
So far we are not aware of either a general proof justifying this intuition nor of a
counterexample. But since this view of things helps to understand what kind of
information about K is provided by the spectrum F, we feel obliged to report on a
few cases where the above interpretation is valid.

A first, almost trivial example is the following subset of the support K of a SMF p:

Co = <wla - 'awt>7

where the similarities w; are ordered in a way to assure logp;/logh; = ... =
logpi/log Ay < logp;/log\; for all i > ¢ + 1. Cy is the set of the ‘most proba-
ble’ points (see [Tél, HJKPS]). It is self-similar and has by (2.13) and theorem 2.6
the dimension

dbux(coo) = dHD(Coc) = F(Doo)

Note that this interpretation of F|(Dy) is less immediate for self-affine multifractals
(see Ex. 3.3). The two trivial cases are t = 1 (C is a singleton) and ¢t = 7 (Cy = K,
1 is homogeneous). In a similar fashion, the set of the ‘most rarefied’ points C_, can
be defined. Provided (2.22) holds for negative g, the dimension of C_, is F(D_y,).

Example 2.10 (Subsets of Local Holder Exponent a. Disjoint Case.)
Reporting shortly on [CM] we define for a given SMF p= (A1, ..., Asip1y-. . 0r))
. log i m)

K, = {lm el : nlggom = a} Ko = W(Kﬂ)'

Defining f(q) as the unique solution 7 of (2.14) for each ¢, the authors of [CM] are
able to prove that

dup(Ka) = Blg) + qa(q)

for all ¢, where a(q) = —(#'(¢). This result is a convincing example for the power of
an approach ‘tailored to multiplicative cascades’ and the use of symbolic dynamics.
For a geometric relevance, however, the following characterization of K, in terms
of the local behaviour of the measure p is essential: Provided the sets w;(K) are

pairwise disjoint
log p(U(z, 9))

I\a:{IGKilgﬁ]l Tog

=a}.

(This is an almost immediate consequence of the fact that the e-neighbourhood of
K satisfies the OSC for sufficiently small e. However, a proof is also contained in
[CM].) Consequently K, is just the set of all points with local Holder ezponent o
[EM]. With corollary 2.5 this can be summarized as follows:
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Proposition 2.8 (Cawley-Mauldin) Let p be a SMF. Provided the sets w;(K)
are mutually disjoint,

I P )

=a}) = F(a)
for all @ €]Dwo, D_o|. Moreover, p(Ky) =1 ([CM, p 210, remark 2.12]).
O

The next example shows, that disjointness is not necessary to achieve similar results.

Example 2.11 (Subsets of Local Holder Exponent . One Dimensional
Case.) A result of Collet et al [CLP] will be adopted to fit our purpose. Take a

self-similar set K = (wy,...,w,) on R with the following two properties:
a) an interval O satisfies the OSC, and
b) the map

g x=w(z) for z € w;(0) = V;

As an example take wy(z) = /3, wy(r) = —r/3 +2/3 and wy(z) = ©/3 +2/3 with
K =0,1]. Now supplement K to a SMF = (wy,...,w,;py,...,p,) with arbitrary
probability vector. It is easily verified that p satisfies the hypothesis of [CLP).
Trying to avoid the difficulties arising in the calculation of the singularity exponents
7(g) for negative ¢, the authors of [CLP] introduce certain partition sums Z,(q)
related to the 27"-grid. A closer look at the sophisticated construction reveals
inequalities between Z,(q) and Sj(¢), which are of the same kind as used in the
proof of proposition 1.5. Consequently, T(¢) = limy_,o log Z,(¢)/ log2". So, [CLP,
theorem 3.1] and our corollary 2.4 yield:

Proposition 2.9 (Collet et al.) Let i be as above. Then

- logp(E)
d K: 1 = =F
HD ({I € ‘E‘l‘r—rbl[] log\E\ O[}) (O[)
z€int(E)

for a # ag from |Do, D_u|. Thereby |E| denotes the length of the interval E.

O

For reasons of completeness we point to further results in this field obtained by
Lopes [Lop| for Julia sets of hyperbolic rational maps in the plane, by Schmeling et
Siegmund-Schultze [S] for self-affine measures and by Rand [R] for certain CMF.

There is more to say about the measures y occurring in examples 2.10 and 2.11.
Since SMFs are nonatomic (lemma 2.7), a famous theorem of Young [Y, p. 112]
allows the following reasoning: taking any p as in example 2.10 and any o with
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w(K,) > 0, [Y] implies dyp(K,) = o and hence F(a) = @ = a; = D;. On the
other hand, dyp(K,) = F(a) < Dy for all @ # ap. Thus

WKy =0 (a#aq) mP(K) =0 (a#ap), (2.25)

The same holds for p as in example 2.11.

From (2.25) the difference between the invariant measure and the Dy-dimensional
Hausdorff measure (restricted to K and normalized) becomes apparent. Moreover,
considering these measures as probability measures on the embedding space, the
local Holder exponent takes the value ay, respectively ag, with probability one.
The first equation in (2.25) supports the imagination that the measure p concen-
trates in the d-boxes with y(B) =~ ¢P1. Compare also page 28, (2.24) and proposi-
tion 2.8.

Example 2.12 (Concentration of ) Assume that 4 is a multifractal and @ > 0
such that for any h > 0 there is a n > 0 with F*(a) < a—nforall a ¢ [a—h,a+h).
Take e.g. a SMF p and choose & = D;.

Then the calculation of Falconer [Faled, p. 260] is valid, since f(a) < fT(a) =
F*(a). Tt shows that for G5(h) := {B € G; : 6% < u(B) < §27h},

p( U B)—=1 (510 for any h > 0.

BeGjs(h)

Thus 1 is concentrated in the boxes with u(B) ~ 6. But note that these boxes do
not necessarily form a decreasing sequence of compact sets as 4 |, 0. O

Finally we give the example of a SMF p and a subset E of its support K with
dyp(E) = Dy and draw the connection to (2.24) and to the examples 2.10 and 2.12.

Example 2.13 (Subset of Exact Dimension D;) The following result is due
to Eggleston [Eggl]:

Let (oy...,pr_1) be a probability vector and denote by N(z,n,k) the number of
times, the digit k occurs amongst the first n digits of the r-adic decimal expansion
of © €[0,1). Then the Hausdorff dimension of

1 N
E={z€0,1] : nlg&;\’(x,n,t)7p,-,270,...,r—1}

satisfies

r—1

L pilogp;
dyp(F) = =——

up(F) —logr

(Note that only countable many points & have more than one decimal represen-
tation. Concerning matters of dimension greater than zero, enumerable sets are
negligible.)
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Eggleston’s result may be regarded from the point of view of multifractal formalism:
Choose 1 = (Wp, ..., Wy—1; Doy - - -, Pr—1) With w;(z) = (i+z)/r. Of course K = [0,1]
and E is a subset of K. Since countable sets are P-null sets,

1
(i) €EE & YE=0,...,r-1 li_)m—#{lgn:il:k}:pk,
n: wn

for P-almost every infinite word i,,. By the Strong Law of Large Numbers the last
condition holds P-almost sure. Thus u(E) = 1. By corollary 2.4 and by Eggleston’s
result dyp(E) = Dy, which by (2.24) may be expected to equal dgp(p).

Finally, E can be related to the examples above. For y-almost every x € E there
is exactly one i,, € 77!({z}). Then, letting §, = r~", there is a unique B, € Gj,
which contains z. Moreover, the closure of By, is V{;_,) and

r=1
1(By) = pe_pmy = [] ™",
=0

leading to
1T*l N N r—1 |
logu(B,) _ logpam _ " &’ (&,m, i) log . Lmlosn:
log dy, log /\(iww —logr —logr

as n — 0o. The connection to example 2.12 is immediate. Furthermore, £ = Kp,
up to a p-nullset. But there is no rigorous argument showing that E is the set of
local Holder exponent D;. @)

See also example 3.3 for a self-affine multifractal and an explicit subset K’ of ‘strict
local Hélder exponent’ D.

2.4.5 Counterexamples
This subsection provides four multifractals with unusual spectrum:

o A so-called left-sided spectrum [MEH], which means that T(¢) = oo for all
negative ¢. Consequently o* = oo and here even T(0) # sup F*(a). For
further examples of this kind see [MEH, ME, CJVP].

¢ Nonconcave spectra.
o Non grid-regular singularity exponents and spectrum.

Example 2.14 (A Multifractal g with F~(a) = dpox(K).)

In contrast with example 2.1 the extraordinary behaviour of F~ does not arise
from an inherent inability of the multifractal formalism but reflects the strong in-
homogeneity of the measure p and the existence of arbitrarily large local Holder
exponents.
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Let K be the middle third Cantor set as constructed in example 1.1. Unlike the
construction of CMFs the product measure P’ on its codespace {1,2}™ is chosen
according to the more and more one-sided measures

W= e’ =1-3"

on the n-th factor {1,2}. This is not a multiplicative cascade any more.
Let pu:= m,P'. The calculation of F~ is carried out using the admissible sequence
0, = 37", Singletons are g-nullsets. So for any §,-box B

oY =p(B)) #B=Vandicl,
B) = " L
0 otherwise.

Note first that pﬁ.j) e -pg-:) < p%”) =4," for all i € I, with i,, = 1. Now fix a. For
any integer n > «

P =H#I,> M (o) >#{i€ ], s ip=1}=2"",
Together with (2.13):

F-(0) = li 28 Ma(0) _ log?

= = X K7
n=0o —logd,  log3 bor(K)

as it was claimed. In addition

Ss.(q) = H (3790 + (1= 37)) = c(m) H (37F7+ (1-37%9).

k=1 k=n;

For ¢ > 0 and € > 0 choose n; large enough to ensure
, 1
3FI<(1-3F) and  —2<3Flog1-37) < -3 for k > n,.

Straightforward estimates give

3"2;1(71 -y +1) <log S5, (q) —logc(ny) < (n—ny +1)(log(l+¢) — ﬁ)
Dividing first by — log d,,, and letting then n — 0o, then n; — oo and finally ¢ — 0
shows that T'(g) vanishes and is grid-regular. For ¢ = 0 direct computation yields
S5,(0) = 2" and T'(0) = dyox(K). For ¢ < 0, proposition 1.15 and lemma 1.16 yield
the grid-regular value T(¢) = oo.

Finally, F*(a) < 0 for all positive a due to F*(a) < T(q) + go. On the other hand
theorem 1.1 and (1.24) give F(0) = F*(04) = 0. (A straightforward calculation
yields even F(a) > 0 for all @ > 0.) By monotonicity F'*(a) = 0 for all strictly
positive . So it has the looks of the positive semispectrum of a Dirac measure.
This reflects the fact that the measure p is concentrated at the point 1. Only F'~
and 7' reveal some more information about .

Summarizing, this multifractal exhibits the following features:
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o The singularity exponents are not even semicontinuous at zero.

00 ifg<0
T(q) =< log2/log3 ifqg=0
0 otherwise.

o The multifractal is left-sided, hence a* = oo. Moreover,

Fl)=F*)=0 (0>0) ad  F (o) =des(K) (0 €R).

e T(0) > sup F(«) = sup F™(a) = 0.
O

Lemma 2.10 Let puy, ...,y be multifractals with mutually disjoint supports and let
(¢1y- .., ¢t) be a probability vector. Then

t
K= Zciﬂi
i=1

is again o multifractal. Moreover, using a selfexplanatory notation,

and grid-reqularity of the mazimal F;() resp. T;(q) carries over to F(a) resp. T(q).

Remark Example 2.9 shows that the conclusions are wrong for infinite sums of
multifractals. (All Dirac measures possess the same trivial function T'(¢q) = 0. An
infinite linear combination of them, however, may not.)
Proof Throughout the proof it will be assumed that 0 < 3v/d-d < dist (K, K;) for all
distinct i and j. Thus, if B € Gy, there is a unique ¢ such that p((B)1) = ¢if;((B)1).
First the proof is given for F(«). Fix a and take ¢ > 0 arbitrarily. Choose §y > 0
such that §° < ¢; < 8§~ fori =1,...,t. With a selfexplanatory notation it follows
that
t

Ns(a+e)=Ns(a—e) <Y NO(a+2¢) = N (a = 2) < Ny +3¢) = Ny(o — 3¢)

i=1
whenever 0 < 0 < . This implies immediately the claim. The assertion for the
semispectra follows similarly from

t -
Ny(a +¢) < YN (o +2¢) < Ny(a + 3¢).
i=1

To treat T(g) and T(¢) note that min(c{) - Sék)(q) < Ss(g) <max(cf) - ¥ Séi)(q). O
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Example 2.15 (Nonconcave Spectrum) Take

T 24z 44z 6+
— = = tQ(]j):
3 3 3 3

and set 1 = (w, wy;2/3,1/3), pa = (1, £2;8/9,1/9) and pu:=1/2(pt1 + piz)-

Since py and gy are symmetric biadic SMFs (i.e. 7 = 2 and Lip(w;)=Lip(w,)), their
spectra are symmetric with respect to the corresponding extrema, say oy’ and ay”.
Moreover, their extremal values are both equal to log 2/log3 = dyex (K1) = dpex(K>).
By lemma 2.10 y has the spectrum shown in figure 2.5. Note that F is grid-regular
and that it equals F™ exactly for a outside Jay', o[- @)

wi(z) == wo(z) t(z)

Figure 2.5: The nonconcave spectrum of p1=1/2(j1 + 12) as given in example 2.15.
The dashed parts show the internal bisector of the axes and the spectra of p; and

2.

Example 2.16 (Another Nonconcave Spectrum) Take

T 2+zx 16+ U+
11)1(m)=§ wy(z) = 3 ti(z) = 0 ty(z) = 0

and set p1; = (wy,w;2/3,1/3), pa = (t1,12;5/9,4/9) and p := 1/2(uy + pa). By
lemma 2.10 the spectrum of y is as shown in figure 2.6. Moreover, it is grid-regular
and equals F™ in the union of two disjoint intervals. O

e

/

i

u!
o\‘
v

Figure 2.6: The nonconcave spectrum (on the left) of another multifractal p =
1/2(m1 + p2) and its positive semispectrum F*. See Ex. 2.16. The dashed parts
show the internal bisector of the axes and the spectra of jiy and ps.

The last two examples allow several conclusions.
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o First of all, a spectrum F is not necessarily concave. Moreover, it is not
necessarily differentiable.

Secondly, neither F' nor F™ must everywhere equal the Legendre transform of
T. This violates the duality between F and T the latter equals always the
transform of F™ (except maybe at 0) and is hence convex. This asymmetry
is also reflected in the fact that taking the maximum of functions conserves
convexity but not concavity. To say it in a different way: T is more regular
than F since it depends on the values p1((B);) through a sum or ‘average’. On
the other hand, T provides a coarser way of measuring the singularities of
and carries less information than F.

As a third point consider lemma 1.10: F' may well be strictly monotonous in
an open interval and nevertheless equal neither F* nor F~. Thus a ‘dual’
version of the mentioned lemma does not hold. Furthermore, F'*(a) < F~(a)
is not enough to imply F(a) = F*(a).

Finally, the touching point of F' with the internal bisector of the axes is not
necessarily unique, and T is not necessarily differentiable at ¢ = 1. Conse-
quently, the limg_,; D, may not exist.

Example 2.17 (Non Grid-Regular Exponents) A biadic CMF on R with
T(q) < T(q) (¢ # 1) will be constructed. Choose two strictly increasing sequences

of integers (ny)ren and (my)gem such that
n n

—t 1 .

Ng + Mg Ny + My,

=0 (k— o).

Let {(n) denote the number of members of (ng)ken less or equal to n. The sets V;
involved in the construction are of the form

Vi = [@3™, (a;+1)37Y]

for some integer a;, where M = M(n) := n + my( and n = |i|. To be more precise,
set Vg = [0,1] and my := 0. Assuming that Vj is constructed and of the form as
above, let a;,; and a;,; by defined through

aﬁﬂ_3—M(n+1) — ai3—M(n)
ai*2_3—M(n+1) _ ai3ﬂn1(n)+2.3ﬂw(n)71_

Since the function n — M(n) increases by my —mg_; + 1 when n = ny, and by 1
otherwise, this choice of V; actually means the following: the well known construction
of the middle third Cantor set is carried out until a stagenumber n = ny, is reached.
Then the left boundary points a; of the V; are chosen as usual, but the length
extremely small relative to the length of the preceding intervals. It is immediate
that the Vi, are subsets of V.
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Thus the construction of K is complete. Let yu = (m; py, p2) where 7 is the coordinate
map of K and (p;,ps) an arbitrary probability vector. For the sake of definiteness
assume p; > po.
Take an arbitrary integer ¢ and set d, = 37". There is a unique integer N = N(t)
defined by

M(N =1)+1<t< M(N).
Every set V; with [j| = N = 1 belongs to the 3~MN-1)_g1id and its middle third

interval with length 3-M®-1)-

! separates its two ‘daughter intervals’ Vi1 and V.
By induction each set V; with |i| = N is contained in a 37'-box, just because
37MIN) < 37t furthermore, since 37 < 37M(VD=1 every two distinct V; with
i = N are separated by a 37"-box which does not meet K. Consequently, for any
di-box B either p(B) =0 or p((B)1) = u(B) = u(V;) = p; for the unique i € Iy for
which V; is contained in B. This yields

log( ¥ pf
log Sy (¢) _ ( =N ) _ N() log(p1* +p2)
—logé; tlog3 t log3 °

Taking first t; = ny, + my_y results in N(tx) = nx and N(t)/ty = 1 (k = ).
Taking ¢}, = ny + my, implies again N(#},) = ng, but N(#,)/t;, = 0 (k = 00). Since
0 < N(t)/t <1 for all integers t, this results in

_ log (p1? + pa") _ o (log (pi" + o)
T(q) = max (T’()) ZL(q) = min (Tso) (1€R).
Tt
Ia Tig)
B

Figure 2.7: A CMF with T'(q) < T(q) (¢ # 1) (Ex. 2.17 with p, = .85, p, = .15).

Finally, applying the arguments given in the proof of theorem 1.2 to the sequences
(0t )kem and (0y, ke shows that
log M,
F(a) > lirglui)nfO%T‘;g?) = —oo for0<a<—logps/log3
log Ns(o) 0 fora> —logp/log3
| =0 for0<a<—logp/log3.

+ -
F (oz)>hr§1lénf ~logd




Chapter 3
Self-Affine Multifractals

Having treated the self-similar case, one way to go further is to consider affinities. In
fact an intensive study of self-affine sets has led to important results [Fale3, Falch,
K, U, Z, GL] and applications, the latter mostly in the field of fractal interpolation
[BEHM, GH2, Ma2, Bed4]. It is, therefore, natural to consider self-affine measures.
In doing so we will restrict our investigation to a particular kind of affinities and
denote the obtained self-affine multifractals by SAMF. It is almost evident that the
characteristic values of the involved affinities will partly determine the singularity
exponents T'(q), like in the self-similar case. Carrying the analogy even further, one
may expect implicit equations to hold for T'(¢), from which the box dimension is
recovered for ¢ = 0. This indeed turns out to be the case. However, a completely
new feature appears: the singularity exponents T(q) of a SAMF are obtained as
the maximum of the solutions of two equations. This is a consequence of the fact
that the affine maps under consideration stretch with different ratios in two fixed
invariant subspaces.

In the first section the definition of SAMFs is given and it is shown how the asymp-
totic behaviour of S5(q)—and thus T'(q) is governed by the probability numbers
and the characteristic values of the involved maps. Section two is devoted to limit
theorems needed in section three, where the singularity exponents T (¢) are computed
and grid-regularity and differentiability are discussed. Falconer gave the ‘almost
sure’ dimension of self-affine sets. Section four provides this value in the context of
this chapter and compares it with the actual box dimension Dy = T'(0). In section
five examples are developed and relations are drawn to recent publications.

3.1 Geometric Properties
In the first half of this section the particular geometrical situation of the self-affine
measures under consideration is introduced. Then, after drawing first consequences,

an intuitive understanding of the asymptotic behaviour of Sj(¢) is provided on

67
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page 72. In the second half of the section this intuitive argument is made rigor-
ous step by step.
Fori=1,...,r let w; be a diagonal affine contraction of R? i.e.

w; - (1(1)@(2)) g (192')\1'1(1) + Ui, CiVil(z) + h) (3-1)
where ¥; and (; are from {-1,+1}, u; and v; from R, and where

A= max{Ap, ..., Ay, <,

v:= min{A,..., \vp,.. 0 >0 (32)

Similarly as for SMF's it is required to have a nonempty, bounded, connected open
set O such that

w(0)CcO (i=1,...,r) and  w(0)Nw;(0)=0 (i# ). (3.3)

In order to treat affinities rather than similarities one more regularity condition is
needed: denote by R the smallest closed rectangle with sides parallel to the axes,
which contains O. For the sake of simplicity R = [0,1]* will be assumed. This
choice is not really a restriction as far as multifractal formalism is concerned: any
rectangle can be transformed to [0, 1]? by a diagonal affine map ®. Moreover, ®(K)
is invariant under ® o w; o ®~!, which possess the same characteristical values as w;.
The additional hypothesis on O is: there is a ¢ > 0 and @y, 9, y1, y from [0, 1]
such that

(z1,), (z2,1—=1), (t,y1) and (1 —t,90) (34)

belong to O for all t €]0, g[. Loosely speaking, O touches each boundary part of R
‘perpendicularly’. Any set O with the above properties is called round open set.

Definition 3.1 Let (py,...,p) be a probability vector and let (wy, ..., w,) be a set

of diagonal affine contractions with a round open set. Then

is called Self-affine Multifractal, for short SAMF. The characteristic values of w;
will always be denoted by A; and v;.

In order to compare G4 with a suitable system of sets V; the definition of J; (2.4)
given in section 2.1 has to be modified: For any finite word i =1 .. .4, let

A=A A Vii= ViV,

as usually and define
(1) == min(\, v) > K(i1 .. 1) - K6(0n) > K(07) - ... K(iy).

Since & is only sub-multiplicative we prefer the slightly different notation and will
not write &;. Trivially k(i) < A&(iy...in—1), thus k(@) | 0 (Ji] = oo) and the
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construction (2.4) of J; on page 34 works with (i), replacing A;. For 0 < § < v,
the set J; is thus uniquely determined by

J,j:{z:il...l'nef : K(Z)S6<K(i1...in,1)}. (35)
Moreover, J; is tight and secure (see (2.5) and (2.6)) and
vd < k(i) <o forallieJj

Note that this definition of J; coincides with the one of section 2.1 when \; = v;
(i=1,...,1).

The aim of this section is now to prove that it is enough to consider V; (i € J)
in order to determine T(g). This is the essential step towards ‘symbolic dynamics’.
First, an estimate analogous to (2.21) is required, saying that a d-box is not inter-
sected by too many sets V; with ¢ € J;. It is only here, where the ‘roundness’ of O
is actually needed.

Lemma 3.2 Given two numbers py > py > 0, there is a number b depending only
on the affinities wy, ..., w, such that

#Jy(B) = #{i€ Jy - Vin(B) £0} <b
for all § >0 and &' > 0 with py > 6'/8 > py and for all B € G;.

For reasons of simplicity the Cartesian product of two intervals of length u and v
will be called a wxw-rectangle. It is not important whether a rectangle contains some
parts of its boundary or not.

Proof Take i € Jy(B). The A\pxw;-rectangle R; := w;(R) contains V}, thus it must
meet (B);.

i) Assume first that \; > v;. Since O is connected and bounded, there is a path
within O joining (0,1;) with (1,10), which consists of finite many straight
line segments g1, ..., gy, each one parallel to one of the axes. Choose ¢ > 0
such that U(¢, Q) is contained in O for all endpoints @ of the g;, except
(0,41) and (1,2). The path g;...gy is by w; mapped onto a path which
crosses R; parallel to the axes and which joins w;(0,y;) with w;(1,ys). Since
v; = k(1) < &' < pod and since (B); meets the A\xv;-rectangle R;, there is [
such that B := (B)1+,, intersects a part h; := w;(g), which is parallel to the
2(D.axis (see Fig. 3.1). By the ‘roundness’ of O at least one endpoint of hi
must lie in w;(0), the interior of V;. This point is denoted by Q.

i)a) Assume first that Q; lies in B' (see the set R; in figure 3.1). Then at least
one quarter of the ball U(g'v;, @;) is contained in B'. Moreover, this ball
is a subset of the ellipse w;(U(¢, Q) and hence contained in w;(0). Now
the question is, how many such words exist. Since w;(0) and w;(0) do
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B’

Figure 3.1: Though the sets R; do not have to be disjoint, they cannot overlap too
much due to the horizontal paths h;.

not intersect for i # j (Jy is tight (2.5)), the just constructed balls U are
disjoint. Comparing volumes, there are at the most

43422
b _77(( Q’V/hZ)

words of this kind in Jy.

i)b) When Q; lies outside B' (see the set R; in Fig. 3.1), then ; must meet
OB' in one of its two vertical parts. Denote this intersection point by S;.
Take two different words i and j satisfying case i)b) such that S; and S;
lie on the same straight part of dB'. Then, the ball U(g'v;, Q;) is disjoint
with V; and hence with h;, and vice versa. Thus, S; and S; are at least
at distance g'v; > ¢'vd’ > d'vp,d of each other. Comparing the length of
OB' with this minimal distance proves that at the most

3+2p2

bz =2 ,
ovp

words of this kind are in Jy.

ii) When ); < v;, the same argumentation holds, showing that b := 2(b; + by) is
enough. o

Remark From the proof it is immediate that O can be allowed to have a finite
number of connected components which all satisfy the ‘roundness’-condition. The
constant b has then to be multiplied by the number of components.

As a consequence of the lemma:

Corollary 3.1 SAMFs are nonatomic.
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Proof The proof works exactly as the proof of lemma 2.7 except that (2.21) has
to be replaced by lemma 3.2. o
We continue with elementary properties of z: Denote the projection of IR? onto the
2®)-axis by 7 and set

wgl)(xu)) =00V +u;, w?’ @) = uie® + v,

and
K® =z®(K),  pu® =g,

Then, ® is a multifractal on R. Its singularity exponents and the other values
relevant in the multifractal formalism will be marked with a ‘®), ie.

- log (57(0))
T®(g) = (¢ — 1)D," = lim sup ———2 2
(@) =(¢-1)D, 10 p —logd
and so on.
Lemma 3.3
ll(k) <UJ§)1 -'7w£k)'pl)"'7p7'>
K® (wgk) _____ w®) = supp(p®)
Proof

i) We show that K® = (w§k),...,w£k)) for k = 1: If z € KO, then there is y
with (z,y) € K. By the invariance of K (2.8) there is an i € {1,...,r} and

(', y') € K such that (z,y) = w;(«', ). In particular z = 'wgl)(x’) since w; is
diagonal. Thus

On the other hand, if z = w(" () with 2/ € K@, then there is ¢/ such that
(') € K and z = 70(w;(2’, y)) € 7D(K) = KO, Since K is compact
this proves the claim.

ii) The diagonality of w; implies 7) o w; = wgk) o). From this

T T k . T k
1 =70, =3 pr®, (wip) = Y pie®, (7 ®p) = Y pro® u®,
i=1 i=1 i=1

and p® is the unique invariant measure with support K*) (see section 2.2).
<&

After these preliminaries let us turn to Sy(q). Let

o(q,a,b,7,J) = Z PN+ Z piqlxib)\ﬂ’b (3.6)

ieJ+t ieJ~
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for any finite set .J of finite words, where
Jh={ieJ: N>yt T ={ie: )<yl (3.7)

This sum ¢ will approximate Ss(q) - 67 for J = J;, a = TM(q) and b = T?(q)
intuitively in the following way: consider

Zu J(k+1)e Zu (k4 De[x[0,1]) ~ e TV@ . (38)

For i € J;™ and e = v;/A; < 1, the strips [ke, (k+ 1)z[x[0, 1] are by w; transformed
into squares of side »; > 4, covering V;. The measure of such a square is roughly
pi - 1 ([ke, (k + 1)e]). Doing similarly for i € J;~ and considering the obtained
squares as an approximation of the d-boxes forming Gy, (3.8) leads to

Sie) = ¥ Y (pieu! k+15[)+22(1 )([ke. (k+ 1))
ieJst k i€Js”
= Y pS9)+ ¥ p2SP(q)
ieJst €5~
= Y ptA) T Y pam) O
iest i€Js”

This partition sum will tend to zero for ¢ > 1 and to oo for ¢ < 1. To detect the
power rate with respect to d it is convenient to investigate

Z pz Vz/)‘ Vﬂ‘\' Z Ih )‘/Vz) ')‘Lﬁ

ied;t i€Js™

U(qa T(l)(q)v T(Q) (q)7 " ]5)

Step by step the above approximation will be made rigorous. The asymptotic be-
haviour of o is investigated in section 3.2.

12

Salg)- o7

Lemma 3.4 For anyq € R, k € {0,1} and any7 > T®)(q), 7 < T®)(q) there is a
number ¢ such that for all § €]0,1]

1 _
80 ()07 <1< e 5P (ga

Proof

i) Remember that —co < T%®)(q) in general and that T*)(¢) < oo since the mea-
sures p®) are contractive CMFs. Obviously there is a dy > 0 such that the
assertion holds for § < dy. Thus it is enough to prove that Sék)(q) is bounded
from above and away from zero for d € [dy, 1]. For the remainder let 4 be from
this interval.
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ii) Take ¢ > 0 first. Then u®((B),)? < 1 and S (g ) < #G5H < 1/(5 < 1/8p. On
the other hand, there is a B with p®)((B), ) > u®(B) > 1/#G5® > 6, thus
S;k)(q) > 0" Here G35 denotes the set of all 6-boxes on the x(¥)-axis with
nonvanishing y*)-measure.

iii) Given ¢ < 0 it is obvious that S{(¢) > 1. For the upper bound note that
1% is a CMF arising from an IFS  but not necessarily with a basic open set.
However, n can be chosen large enough to ensure \* < dg. Then the diameter
of V¥ = w;®)([0,1]) is certainly smaller than 6 provided |i] = n. Given
B € G;® there must be a word i of length n such that V;*) meets B (I, is
secure). Thus V;*) is contained in (B), and u®)((B),) > p;. Every V®) can
meet at the most two boxes B. This implies S\ (q) < 2(p! + ... + p?)". The
independence of n from § completes the proof. &

Lemma 3.5 Given ¢ > 0, 1> 0 and v € R there are numbers ¢; and ¢y such that
forall 6 >0

e+ (g, T (q), L% (q), 7+, Js) < Silg) - 07 < 1 0(g, TV (q), T (g),y =, i)
Proof Let § >0 and ¢ > 0.

i) The sets V; are circumscribed by Axy;-rectangles, most of which are long stretched
and thin. For i € J; V; will be subdivided into sets of diameter ~ ¢. Take first
the case \; > vy, i.e. i € J5T. Set

S
Y
Then ¢; < 1. Define
Clki) = (k= 1) -2y k- X 0,1 (9
for k =1,...,[1/¢;], where [2] is the smallest integer greater than or equal

to z. The sets D(k,1) := w;(C(k,3)) constitute a disjoint covering of V; by
gidixv;rectangles, which are in fact squares (see Fig. 3.2). From lemma 3.3
follows

5.0 = ¥ @Wanl(k=2)e; (k1)) = 3 u(C(k,D)))"
#(C(k)#0 H(C(k2)#0
where (C(k,1)); == [(k—1) &, (k +2) - &[x[0, 1]. In the case \; < ; one finds

of course
> Ok )n) = 5,%(g)
u(C(k,i)#0

with the obvious modifications.
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8/

3/ vj
0 W

N
1 %_ L,

& Ki=gih,

Figure 3.2: The square [0, 1]? is subdivided into strips C(k, i) of width e;, which are
mapped onto squares of side k(i) ~ 4.

ii) Take B € Gs. Observing that .J; is secure and tight, and that the support of
is contained in O, the invariance of 1 yields:
u(Br) = 3 pp(w (BN V)
i€Js
[1/e4]

= ¥ % pi(wi M ((B): N D(k,i) N V)

i€ds k=1

Y Y il C (k. 1))

i€J;

IN

Here, ' runs for fixed ¢ over all k such that (B);, D(k,i) and V; intersect.
Since the D(k,i) are disjoint and contain squares of side dv, there are for
each 7 at the most 1+ 3/v such integers k. Moreover, (B); meets only b sets
V; (lemma 3.2). Consequently the last double sum has actually at the most
by = b(1 + 3/v) terms. So it is possible to find k£ = k(B) and i = i(B) such
that D(k(B),i(B)) meets (B); and such that for C(B) := C(k(B),i(B)) the

inequality
07 p((B)1) < bi - pymyn(C(B))
holds. This leads to
Ssla)= 0 w(BL) <8 Y. plpyn((C(B)),)"
BeGj BeGy

Since every fixed D(k,4) is a square of side k(i) < 4, it can at the most meet
16 sets (B); with B from Gs. Thus at the most 16 pairs (k(B),i(B)) can
coincide and hence
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-1
wt

Ss(q)

IN

1660 Y pul(Clk, )y

i€J5 u(C(kd)#0
= 160( Y poS, Y0+ Y pS20).

iJst i€J5”

Now choose 7, = T®(q) + n (k = 1,2). Setting ¢ = 16ch,? with ¢ from
lemma 3.4 gives

Sile) < (X pOm)™ + X plu/A)).

i€t i€Js”

Writing a = TM(g), b = T®(q), ¢ = ¢ max(1,»77) for short and observing
k(1) <6 < k(d)/v yields

Ss(q)d? < (71( Z piq/\il”i%m + Z piq’/‘fz)‘iﬂrju)

ieJst i€J5™
- . T, Q) 0,0 ) a4, by 7—n-b
= LI(Z AT PN+ Z”zn'pzyz)‘z )
i€t i€Js™

IN

Clg(qa a, by 7= JJ)
The last estimate used A <1 (3.2) and 5 > 0.

iii) The same argumentation as above but with B and D(k, i) interchanged provides
the desired lower bound. So, take i € J; and k such that u(C(k,7)) # 0. The
set Dy (k, i) := w;((C(k,2))1) N'Vj is contained in a rectangle with sides (i)

and 3x(i). Thus there are at most eight boxes from G4 meeting Dy (k, i) and
hence one among them, say B(k,1), with

p(Dy(k, ) < 8- p(B(k,i))-
Using the invariance of y this allows the estimate
8'u((B(k, 1)) 2 p(Dy(k, 1) > pi"u((C (k. £))1)"-

On the other hand, any fixed B € G can only meet b sets V;. And for each
such i the box B can only intersect (3+ 1/v) sets D;(k, i), since w;~*(B) has
to intersect (C'(k,4));. Thus, at the most by := b(3 + 1/v) sets B(k,7) can
coincide with B. This leads to

08%S5(q) > > Y pfu((C(k,1)),)"
i€ Js p(C(k,i))#0
Y 075,V + Y 908, P

iest i€Js™

Now choose 7, = T®(g) —n (k=1,2). With ¢" = 8%cb, lemma 3.4 gives

¢Sila) 2 (Xm0 + X nl/N)).

ielst ieds”
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Writing a = T"(q), b = T®(g), ¢; = min(1,v77)/¢" for short and observing
k(1) <48 < k(1)/v leads to

S(@d > o ¥ pAIw 4 Y piudA )

ielst ieds™
- =N, 000,00 - q,, by 7+1-b
= o XTI Y w
ieJs* iels”

ao(q, a,b,7+1,J5).

v

<&

Lemma 3.6 Given ¢ <0, 7> 0 and v € R there is a number c; such that for all
§>0

Salq) - 8" < e+ o(q, TW(q), T (q), v — 1, Jyja)-

Proof The notation of the proof of lemma 3.5 is kept in use. Let ¢ < 0,6 > 0
and set &' = d/3. Take B € Gs. Since Jy is secure there is an integer k and a word
i € Jy such that for C(B) := C(k, i)

0# p(w;™ (B) N C(B)) < u(C(B)).

This implies in particular that B' = w;™*((B);) contains (C(B)):: considering the
case \; > ; first, B' is a 36 /A3 /v;-rectangle with w; = (B) concentric in its middle.
Moreover, §/); = 38'/\; = 30" /v; > 3¢; and d/v; = 30" /i > 3. Since w;~'(B) and
C(B) intersect the claim follows. It is here where the idea of the new formalism
enters, which says to use p1((B);) of boxes B with nonvanishing measure. Similar

for A; <v;. As a consequence of the invariance of p

W((B)) 2 pn(us ((B)) 2 pn((C(B))) # 0.

Since &' < 4 there are at the most four boxes B with coinciding pair (k,7) and thus

S0 < Y ppu(CBN) <a Y ¥ pu((Ch )"

BEGs i€y p(C(kD)20

The rest of the proof is essentially a repetition of the argument at the end of step
ii) in the proof of lemma 3.5. <&
For negative ¢ it is not so easy to derive a lower bound of S;(¢q). Even more in-
formation is required about the geometry of y: similar as in the self-similar case p
should not concentrate at the boundary of the open set.

To be more precise: an IFS (wy, ..., w,) of diagonal affine contractions will be called
vertically centered if there is an open set O =]s, #[x]u, v[ such that for any z € KV
there is a number [ in I; such that = € 7(V(V}) and 7 (V;) CJu,v]. Note that V; is
a closed set. Mutatis mutandis horizontally centered is defined.
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Figure 3.3 provides a multifractal with centered IFS. For such measures a lower
bound of Sj(¢) can be given also for negative g.

However, it is an important note that the IFS generating a multifractal is not unique.
In applications it can be helpful to change to a coarser construction of the same
invariant set. More precisely speaking, the invariance (2.8) of K holds for any
secure and tight, finite set J of words, not only for I;. The resulting codespace
I, = J™ can naturally be identified with I, = IN, which motivates the term
coarser IFS. Supplied with the obvious product measure J™ will produce the same
SAMF i, since the invariance (2.10) of 1 holds also with J. Summa summarum the
following definition is effective:

Definition 3.7 A SAMF p = (wy,...,wy;pr,...,pr) will be called centered self-
affine multifractal, for short C-SAMF, if it possesses two coarser IFS, one centered
vertically and one centered horizontally.

X

Figure 3.3: On the left the construction of a SAMF: The unit square O is drawn
as well as its images w;(O), marked by the shaded regions. The arrows reveal
the induced orientation. Through this data, the IFS is uniquely determined and
obviously it is centered. Moreover, the projections of the invariant set K are even
self-similar, allowing a calculation of the spectrum as described in subsection 3.5.1.
On the right the multifractal corresponding to the probabilities p; = py = ps = pr =
Pro = pu = 1/25, p3 = ps = ps = ps = Py, numbering the maps from the left to
the right and from the bottom to the top. The image is composed of 150°000 points
provided by a random algorithm.

The strong condition ‘centered’ is needed to be sure that the measure y is nowhere
concentrated on the boundary of the open set. This corresponds to the method
of the new formalism using the measures yi((B);) of boxes with p(B) # 0. More
general assumptions become apparent in lemma 3.9 ii).

In examples, the situation of the lemma below is often encountered.
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Lemma 3.8 (Self-Similar Projections) Let 1t be a SAMF with round open set
10,12 Assume that w'™ (0) N w D(0) # 0 implies v = ;k). If for each i

BENN{0,1}#£0 = F#i: 2P =20,

then the coarser IFS {w;; : ij € L} is centered, and so is p. Moreover, the
projections of the measure p*) are then self-similar.

To speak in pictures: sufficient for ;2 to be centered are the following three conditions.

e The projections K® (lemma 3.3) are self-similar. (The sets V; are then ar-
ranged in rows and columns.)

o If a column contains only one V;, then V; is not allowed to touch the ‘bottom’
or the ‘top’.

o Similar for rows with only one entry.

See Fig. 3.4 or 3.13.
Proof Mark the words of the coarser codespace IN =: I%, by a *.

i) In order to establish I*, as vertically centered take 2 € K. There is y € [0,1]
and ij € I, with (z,y) € V;. If 7r<2>(\’i]-) contains neither 0 nor 1, then [* = ij
is a possible choice. Other“ ise 7 (V) must intersect {0,1}. By assumption
there is k # j with 7(V(V;) = 7)(V}). Consider the set V. It has the
same 7()-projection as V;; (see Fig. 3.4) and hence contains z. Furthermore,

O(Vy;) # 73 (Vy) € 72(V;) implies that its 7®-projection contains neither
0 nor 1. So it is enough to choose I* = ik.

ii) The case y € K is treated the same way. The self-similarity of 4 is shown
in subsection 3.5.1. o

Lemma 3.9 For any C-SAMF p, any ¢ <0, >0 and v € R there are numbers
c, ¢s and © > 0 such that for all 0 >0 and §' = c5- ¢

Si(@)0"™ > e40(g, TV (q), T(q), 7, Jy).
Proof

i) Take i from J;. By assumption there is a vertically centered, coarser IFS of
it with codespace I7, = J™ and round open set O* =s,#[x]u,v[. Since J
is secure, the fixpoints of wy,..., w, must lie inside O*, and therefore, O*
satisfies the OSC also for the basic IFS wy,...,w,. For reasons which will
become transparent only in iv), we choose O = O*. This means that not only
the codespaces I, and I can naturally be identified but also the construction
of ju by cylindrical sets, due to V; = w;(0*). Similar as in (3.9) set

Clk,i) :=[(k—1) &5, k- i x [u,0]
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with the k-range [s/e;] +1,...,[t/e;]. Take an integer k with u(C(k, 1)) # 0.
The idea is to estimate pu((C(k,))1) from below in the following manner:

pip((Clk,))1) > papalw; =Y piu(w; " ((B))) = pl(B)y),

) J€Js

where B is from Gs. Therefore, w;~'((B);) is required to be a subset of
(C(k,7)), and (B); to be contained in int(V;). Once such a box B is found, it
is immediate that it can at the most belong to three different C(k,7): B lies
in int(V;), which are mutually disjoint for different 7 from Jy, and w;~'((B):)
is a subset of (C'(k, ))1. With 7, =T (q) - this results in

30> Y Y pu((Ch ) = Y 7S, V(o)

€5 u(ok)0 ier}

and with lemma 3.4

s(0) > ¢/3- ) pf(Nfm)h

i€y,

Note that this last relation is completely independent of the choice of O. The
same procedure applied to words i € J;, with possibly different codespace 1%
and round open set O = 0*, yields

2'35() ((/3+(/3 (Zpl )‘/V171+ sz Vz//\ 72)

ies) i€y
Then the rest of the proof will follow the lines of lemma 3.5 iii).

ii) It remains only to find B. To keep ideas clear, fix i € J; and k with u(C/(k,i)) #
0 for the rest of the proof. The arguments given will be symmetric in order to
cover the case i € Jy as well. The remaining task is of purely geometric nature.
It concerns only the position of a certain box B. In particular using now the
codespace I%, will not affect step i). The various codespaces are distinguished
by asterisks (*).

Remember that I, is vertically and I3} horizontally centered. As an immediate
consequence it is possible to choose © > 0 such that

re KO = g e a1 and 7 (V) Clu+ 0,0 - 0]
yeK?P = ™ yer@ (V) and 7OV Cls+0,1 - €]

This means that ;1 is nowhere concentrated at the boundary of O. To be more
precise: every strip [z, z'] X R with nonvanishing measure meets the support
K certainly at distance at least © from the ‘upper’ and the ‘lower’ boundary
of O (see Fig. 3.4). This is what is actually needed for the proof.
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L Vi 4%
v, 201 W )
Vi — e

Figure 3.4: A SAMF with r = 5 to which lemma 3.8 applies: consider the second
iterates. To every set V;; touching the ‘bottom’ of O there is a Vix in the same
column at distance greater or equal © from the bottom as well as from the top.
Thus this SAMF is centered and concentrates nowhere on the boundary of O. (See
step ii) in the proof of lemma 3.9.)

iii) Finally, some control in the direction complementary to ii) is required. Without
loss of generality and after eventually choosing a smaller O, there is a letter
m* from I} such that
DV cs+0,t-0]

and similar for I*. For, if there were no such m*, then all 7()(V:%.) would
contain either s or £. Then two cases would be possible. First, there could
be m* # k* such that ()(V7%.) contained s and 7(")(V}:) contained ¢. Then
at least one of the words m*m*, m*k*, k*m*, k*k* would satisfy the condi-
tion above, and the still centered IFS corresponding to (I;)N could be used.
Otherwise,  would equal a translate of (? and could be considered as a self-
similar multifractal. This case will not be treated here since it is trivial. An
easy check shows that the conclusions drawn from this lemma (theorem 3.3)
hold certainly also in this case.

iv) At last B will be constructed. For didactical reasons the definition of ¢; is
postponed. Since u(C(k,1)) # 0, there is V¥ which meets C(k, i) in a point,
say (z,y), of K. Without loss of generality 7 (V;¥) C Ju+0,v — O] by ii).
Now consider a code k7, of (z, y) starting with I*. In particular (z,y) = 7*(k})
and k7 = [*. Then there is a unique n with

)‘Z;...k; < e /2 < Mgk,
Thereby v denotes the minimum of the v* (3.2) of the two centered IFS in-
volved. The factor v/2 is needed to cover the case ¢; = 1, which may well
oceur. Choose a word m* from I} according to iii) such that 7()(V%.) s con-
tained in |s + ©,¢ — O[. Let k" := k}...k, and j* := k" * m*. Then the set
Vi meets C'(k, i) in (z,y) and is suitably small to be still in ‘the middle’ of

(C(k,3))1. Moreover, its subset V}: is at a convenient distance of the border
of O = 0" it must lie in [s + Aj.0,t — A[-0] x [u + ©,v — O] since it is the
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image of V7. under wj- and since it is a subset of Vi (see Fig. 3.5).
Now consider B' = w;~!(B), where B varies over all §-boxes. Since the sets B’

Cdr = CkD

:

Figure 3.5: This picture shows the lower part of C(k,i) for k = 0 and reveals the
construction of V; for two different points (z,y) of K (the black dots). Note that V;
must lie at ‘great’ distance from the boundaries of (C(k,7)); and of O, in order to
know that B{—which meets V;—is indeed a subset of the latter two. (See the proof
of lemma 3.9.)

&

cover the plane there is one with nonvanishing measure which meets V2. The
special choice O = O* in step i) implies, as will be shown straight away, that
B = w;"*((B);) is contained in (C(k,4)); as well as in O. With this proven
one concludes immediately B C (B); C int(V}), thus u(B) = piu(B’) # 0 and
B belongs indeed to G; and is the box desired in i).

First note that Bj is a (36/A;x30/v;)-rectangle concentric to B'. Choosing
finally ¢; = 6/0v(r)? gives

30 ewi ey
= < L

v
o S

< min (-6, £:/2).

Moreover, dist(r(")(B}), z) < diam(r (V1)) = A;. < &;/2 and thus 7()(B))
is a subset of 7V ((C(k,i))1) (which is not necessarily contained in ]s,#[). On
the other hand, dist(r"(V}),{s,t}) > ;-6 and so 7)(BY) lies in Js,1].
Secondly, )

30 Qv < ov?

— <0,
Vi QVi 2

and dist(7® V1), {u,v}) > ©. Thus 7@(B]) is contained in Ju, v[. Summa-
rizing, B! is indeed a subset of (C(k,)); and of O. ¢



82 CHAPTER 3. SELF-AFFINE MULTIFRACTALS

3.2 Limit Theorems

This section is devoted to the asymptotic behaviour of o(q, a, b7, J;) for § — 0 with
focus in its dependence on +y. This is purely a question of convergence.
First we consider two trivial cases.

Lemma 3.10 Let J be an arbitrary set of words. Then

Zpiq/\ia’/?ia lf )‘1' > Vi (Z = 17 s ,\7') ’

La,b,,J) = ieJ
0((1 " ) Zpiqllib)\i’yib Zf)‘l S Vi (Z = 1,...,7”) .
i€

Proof Obviously \; = v; implies A"y, = ;7 = V”A b, O
Assume for the moment that N>y (i=1...7) and that 7 is chosen such that

.
Zpiq)\i =1
i1

Then o(q,a,b,7, Js) =1 for all § > 0, since J; is secure and tight, and the asymp-
totics are indeed trivial.
If one of the cases of lemma 3.10 applies, we call the corresponding SAMF ordered.
For the remainder of this section ordered SAMFs will be excluded, i.e. the assump-
tion

6 <0<e (3.10)
is in force, where ¢; := log \; — logy;. Still, whenever (3.10) is used as a necessary
condition, it will be mentioned.
The complexity of the investigation of unordered SAMFs is founded in the fact that
Js* and J;~ are tight but not secure. First a relation to the somewhat simpler sets
I,, is established.

Lemma 3.11 Let &, = A", ks = [logd/logv]| and my = [2logv/log\]. Then

moks

Js C UI”

n=ks
moM

v ¢ U

n=M
for all 6 > 0 and all integers M.
Proof
i) Let d > 0 and take ¢ from Js. Set n = |i|. Then
V"< (E) <6< K(iy ) <A

and hence n > k; and n < (logd/logv)(logv/log A) + 1 < mgks. This proves
the first inclusion.
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ii) Let M € IN and take ¢ with |i] = M. There is a unique n with &, < (4 ... 7p-1)
< b1 From this k(1) < A« k(i1 ...im—1) < &, and consequently i is an
element of J;,. Moreover,

VM <R <A =0, < Klive.iaen) < AN

thus n > M — 1 and n < (logv/log \)M < moM. O
As a consequence of lemma 3.11 we consider first the function
oala,b) =o(g,a,b,7, L) = Y pN Y "+ Y AT (3.11)
ielf i€l
aif () . (b7)

where ¢ is regarded as a constant rather than as a variable. Since the asymptotic
behaviour of o,(a,b,7) in n is of interest, the two terms o) and o, have to be
studied separately. They are both positive and strictly decreasmg iny. We will
concentrate our study on ;. But note that o, has exactly the same ‘looks’ with
only one difference: the words i with A; = »; contribute to o7, not to o;. However,
the proofs will be formulated in a manner to be correct also 1f it were just the other
way round. So they will mutatis mutandis also be valid for o}, .

As lemma 3.10 might suggest, the asymptotic behaviour of o) is governed by the
properties of the following ‘characteristic function”:

.
Xla,7) =Y pt\w (3.12)
i=1
In order to apply limit theorems from probability theory consider the probability
space (I, B, PT) where I, is endowed with the product topology, B is the o-algebra
of its Borel sets and P* is the product measure on B induced by the measures

{i} =

PN
x(a,7)

on the factors {1,...,7} of Iy. Note that P* depends on a and ~. Consequently
they must be kept fixed when applying theorems from probability theory. The
random variables

Xn i Io—=R iy—c,

are independent (by the property of the product measure) and identically dis-
tributed, i.e.

PHX, =1]= Y piA

L
X(@7) ieZa

Their common expectation amounts

E[Xn] = Z(Lipiq/\iallﬂia = M (313)

x(0,7) = x(a,7)
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Here the partial derivate of y with respect to the k-th variable is denoted by .
The connection between X, and o, is provided by the random variable

Zn = Z ‘Yk

through the following lemma:

Lemma 3.12 For fized a and v
=Y N = X" (a,7) - P2y > 0).
i€l
Proof Let ¢, ..., denote the ¢ different values of ¢y,...,¢,. For short, denote by

Y the sum over all j = ji...j, € {1,...,t}" such that ¢ ...+, >0, Then

PHZ,>0 = Y P =¢,,.... X, ={,]

S Pl et = (h= L. )]
= P*{{;’oo €l iy +...+ci, > 0}] =y"(a,7)o; (a,7).

o
To do the same with o, just interchange A; and ;. The characteristic function is
T
U(b,7) =Y ptwt A (3.14)
i=1

The corresponding random variables are given through

z pqub)\') b

Pt =a]= wq>d_

where d; =logv;/log \; = —¢;, and

o, (b.7) =Y put A =0 (by) P+ 4 Y, > 0] (315)
i€l,

for fixed b and 1.

Turning back to o we keep a and 7 fixed and consider first the case E[X,,] > 0. The
Central Limit Theorem then tells us that P*[Z, > 0] is bounded away from zero,
i.e. asymptotically greater than 1/2. Consequently ;" roughly scales exponentially
with base x(a, 7). Defining 7+ =77 (a) to be the unique real number satisfying

Z PN = (3.16)
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it is immediate that o7 (a,7) is bounded if 7 = 7" and tends exponentially to 0 if
7> 77 resp. to 0o if ¥ < *. Here the strict monotonicity of x(a,7) in 7y was used.
Now assume that E[X,] < 0, ie. x.1(a,7) < 0. Then P*[Z, > 0] tends to zero
exponentially with some base w which is explicitly given by Chernoff’s theorem
[Bill, p 147). Of course w depends on 7 and on a and so the question whether
w - x(a,7) is greater, equal or less than 1 arises. In order to give the value of w the
moment generating function of the random variable X, is required.

M(t) = B[] = e PHXy =] = (x(a,7)) " o (Ni/w) pifAtw ™
T i=1
X(a + t: A/) -1 - ci(t+a)
= = =(x(a,7)" Lptwte .
x(a,7) ;
M(t) is a strictly convex function of ¢ with a unique minimum ¢*, due to (3.10).
This t* = t*(a,7) is determined by M'(t*) =0, or equivalently
Xala+1,7) = Y epueett ) =, B17)
i=1
By Chernoff’s theorem w is just the minimal value of M, thus M (¢*). The following
lemma answers the question concerning w - x.

Lemma 3.13 Given a and provided ¢; < 0 < ¢,, the function

h(y) = x(a, 7)M(t*(a,7)) = x(a +1(a,7),7)

is strictly decreasing, and there is a unique vy such that h(vo) = 1. In particular the
equation system

Xatt) = Lpnfet = 1
= (3.18)

xila+ty) = Y epivleit = 0
=1

in the variables v and t has a unique solution which is (Yo, " (a,)). Moreover, o
does not depend on a and satisfies the inequality 5 < y*(a).

Proof Due to (3.10) ¢ is uniquely determined by the second equation of (3.18),
which is actually (3.17). Moreover, t* depends continuously differentiable on 7 since
X.11 # 0. The monotonicity of h follows then readily:

r

B(y)=x1- 3t++x,2:210g1/1; ‘11/76”“'H <logA-h(y) <0
i=1

since y 1 vanishes by definition of ¢*. An application of the mean value theorem as
in theorem 2.6 ii) shows that h(7) = 0o (y = —00). On the other hand,

T
qu Tl <Y pt] 40 (7= ),

i=1
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because ¢ minimizes by its definition the strictly convex function - ¥ p,u] e (t+9)
for fixed a and . This establishes the existence and the uniqueness of 7, and hence
the solvability of (3.18).

Regarding the equation system, the independence of 7o from a is immediate. Finally
note that M(t*) < M(0) =1 for all v. Hence h(y*(a)) < x(a,7"(a)) =1 = h(7)
and 79 < 77 (a). o
Remark As the close relation to the proof of theorem 2.6 may suggest, it is indeed
possible to calculate the spectrum F of a SMF directly, i.e. not as the Legendre
transform of T but rather by using the methods introduced in this section. Without
going into details we sketch the interesting fact, how the Legendre relation between
F and T is hidden in Chernoff’s theorem. The }° A;” over all words i € J satisfying
pi > A" approximates Nj(a) - 67, and hence determines F'*(a) as the one v for
which this sum is asymptotically bounded. As lemma 3.11 suggests it is enough to
consider the sum over all i € I,, with the same property. The random variables X,
which attain the values log(p;/\#) with probability A7/ 3> A7, provide the connection
to probability theory. A sophisticated study reveals that Chernoff’s theorem applies
exactly for @ < g, leading to

1 1 LN - LA,
“log Y A'==log(Y A)'PXi+...+ X, > 0] = log(ZAg -irtlfﬂ[(t)).
n - £ N

w:n i=1 i=1

pi>Ai®

Thereby M(t) = EleX*] = (L A])"' T A (pi/A?)". Consequently, F*(a) is the one
7 for which inf; > A/ (pi/A%)" = 1. This is exactly what (2.23) expresses. On the
other hand, these equations just say that FT is the Legendre transform of T. In the
case A; = A it reads most explicitly as

log ¥ 7t
: =N _
ngf(atf“/+ Tog 1/ ) = /+1rtlf<06t+T(t)) =0.

We are now in the position to give the asymptotic behaviour of o'
Lemma 3.14 Assume ¢; < 0 < ¢, and define

F+(a) — 7 (a) if xa(a,v*(a)) >0
' o) otherwise.

Then
1 <0 ify>T"(a),
Jlim ~logoy(a,7)¢ =0 ify=T"(a),
" >0 ify <THa).

Proof Fixa€R.
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i) First, v shall be fixed too. In order to obtain the asymptotics of o, it is enough
to know the one of P*[Z, > 0]. Assume first that the expectation E[X,,] > 0,
Le. x.1(a,7) > 0. The common variance of the X, is var = E[(X,, — E[X,])?]
and vanishes exactly if ¢; = ... = ¢, = E[X,], a case which is excluded. Thus,
the Central Limit Theorem tells us that
7y —nE 1
1> P*[Zy > 0] > P*[Zy > 0] > P*[Z, > nE] = P22 5 0] =
ny/var 2
Assume now that E[X,] < 0. Since P*[X,, > 0] > p, > 0 by (3.10), Chernoff’s
theorem [Bill, p 147] implies:

1 1
Jim —log P*[Z, > 0] = lim ~log P*(Z, > 0] = log M(t*(a,7)).
Summarizing

co b e [ logx(ay) i xa(ay) 20,
Jim, n logor; (a,7) = { logh(y)  otherwise.

ii) From now on, 7 is variable in IR. The base of the exponential growth of o is
switching between two functions of y according to i). However, it is important
to recognize that such a change is impossible in the v interval [y, (a)]:
Assume x.1(a,7) = 0 for some v € [y,7"(a)]. Then, t*(a,7) = 0 and
h(v) = x(a,7). But since h and y are both strictly monotonous decreasing,
and since h(yp) = 1 = x(a,7"(a)), this implies 7" (a) = 7. Note in addi-
tion the equivalence of the following four conditions, which is an immediate
consequence of (3.18):

Xa(a,7%(a) =0 xa(@,7) =0 7(a,77(a) =0 77 () = (3.19)

iii) From M(0) =1 follows h(7) < x(a,v). Thus, x(a,7) and h(y) are both strictly
greater than 1 for v < 7 resp. strictly less than 1 for v > y*(a). For these 7 it
does not matter which case of i) applies. For the remaining v ii) yields: Either
xa(a,y") > 0forall v € [y,7"(a)], [ (a) = v*(a) and the investigated limes
is log x(a,7); or y1(a,7") < 0 for all y € [y5,7"(a)], [*(a) = o and the limes
is log k(7). This proves the claim. O

Turning again to o, define 7~ =~7(b) to be the unique real number satisfying

U(b,y) =Y pwtN =1 (3.20)

i=1

Next, consider the equation system
,
Vb+ty) = LN =1
i=1

balb+t,7) = T dpiNeit) = 0
i=1
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Interchanging \; with v; the existence of a unique solution can be deduced from
lemma 3.13. Moreover, )(b,7) = x(y — b,7) for all b and  and this solution must
be y =10, t = ~1(% — b,70)-
Setting
= (b) if (b, (b)) >
Ff(a) ::{ ! (b) if U](b,"/ (b)) = 0

o) otherwise,

with 7o from lemma 3.13, one finds

. <0 ify> I (b),
Jlim ~loga, (b,7){ =0 ify=T"(b), (3.21)
" >0 ify < ().

from (3.15) and the proof of lemma 3.14.
To get an illuminating picture note that the three relevant values y*(a), v~ (b) and
7y are found on the level curve Y = 1 in the (a,7)-plane (see Fig. 3.6). The curve

Figure 3.6: The features of a typical level curve Y = 1 where ¢; < 0 < ¢,. The
curve equals the graph of the function a — ¥ (a). The picture illustrates the slow
convergence of numerical methods bound to find v,.

is the graph of the function a — 47 (a). Moreover, it intersects every straight line
a — 7 = a+ by exactly once in the point (v~ (by) — bo, 77 (bo)). Finally, it has a
unique minimum due to ¢; < 0 < ¢, and the corresponding minimal value is just 7.
This illustrates the independence of 7y from a once more.

Now that the behaviour of o,,(a,b,7) is known, the conclusions for the sums over
the somewhat more complicated sets .J; may be drawn.

Proposition 3.15 Assume ¢; <0< ¢, and let 6, = \*. Then

léiﬁ]l o(g.a,b,7,J5) = 0 ify>max ([ (a), (b)),
limsup o(q,a,b,7,J;5,) = oo if y <max([*(a), [ (b)).
n—00

Proof

i) Take first v > max(['*(a),['"(b)). Lemma 3.14 and (3.21) give L; < 1 and
L, < 1 such that o,(a,b,7) = 0 (a,7) + 0, (b,7) < L} + L for n large
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enough. Lemma 3.11 implies for sufficiently small § > 0

moks moks
U(qv ll, bv 7! ']5) S Z U(q! a, b? ,\//a [71) S Z Lln + LQn S mﬂkﬁ(l‘ll% + LQkﬁ)'
n=ks n=k;

The first part of the theorem then follows from k; — oo (6 — 0).

ii) Take now v < max (I'*(a),T~(b)). Since o] and o, are both positive, (3.21) and
lemma 3.14 provide a number L > 1 such that a,(a,b,y) > L for sufficiently
large n. Then

moM

Z U(qv a, b7 s Jé,l) Z UM(ll, b7 ",’) Z LM

n=M
for large M. Since the terms on the left hand side are all positive there must
be an integer n(M) between M and myM with

1 M
U(qa a, b:« 7 ’]5"(31)) 2 ml’ :

This completes the proof. o

3.3 Generalized Dimensions

In this section the geometric properties of SAMFs and the limit proposition 3.15
are fused in order to estimate the singularity exponents 7'(¢). The lower and the
upper bound differ in general, but they coincide provided that T(®(q) and T (q)
are grid-regular. Moreover, as shall be shown, the latter is a sufficient condition for
the grid-regularity of T. Finally the differentiability of T' will be investigated.

3.3.1 Estimate

The notation of section 3.2 has to be adapted. Now the dependence on ¢ has to
be indicated explicitly. On the other hand, the variables a and b will only take
some particular values. Moreover, a formula should be provided which includes
ordered SAMFs. To keep the following definitions at reasonable size set a = T(!)(g),
b=T®(q). Denote the unique solution (in v) of

T r
Zpiq/\ial/iﬂka =1 resp. Zpﬂl/ib)\ﬂ’b =1
i=1 i=1
by 7*(q), resp. 77 (¢). If \; < v; and A; > v; for some ¢ and some j, denote the
unique solution (in (z, 7)) of

> = 1
i=1
.;log(/\i/lli)piq)\izlliﬁ'iz =0
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by (ao(q),70(q)), otherwise set y5(q) = —o0. Finally set

ity 0. ~v+g)—a

I‘Jr(q) = ’YJr(q} lf i§1 log()\l/yz)plq)\l Vﬂ (q) 2 07
Yo(g) otherwise,

- “(q) if 72 log(v;/A)pitrt A @b > o,

r(q);_{”) X log(ui/)

Y0(g) otherwise,
and define

’ I(q) := max (I (¢), " (q))- (3.22)

In order to provide lower bounds, the analog definitions have to be carried out with
a=T"(g) and b=T"(qg). The corresponding functions will be denoted by 7*(q),
77(9), 7,(@), T*(q), L™ (q) and L(g).

Proposition 3.16 Let i be a SAMF and let ¢ > 0. Then

L(q) < T(q) < T(g).

The upper bound is also valid for negative q, and, provided p is centered, the lower
bound as well. Moreover, for ordered C-SAMFs the left hand side even bounds T(q)
from below.

Proof Let ¢ € R.
i) Take y > T'(¢) arbitrarily and choose 7 > 0 such that v — n > T'. Lemma 3.5 (if
¢ > 0) resp. lemma 3.6 (if ¢ < 0) and proposition 3.15 say, that
S5(q)87 < const - a(q, TV (q), TA(q),y —n, J;) < 1
for all sufficiently small § > 0. This gives the upper bound.
ii) Take v < I'(¢) arbitrarily and choose 1 > 0 such that 7+ 7 < I. Lemma 3.5 (if
¢ > 0) resp. lemma 3.9 (if ¢ < 0), which only applies to C-SAMFs, implies
S5(a)8” > const - (¢, V() T®(a),y + 1, Jy)
for arbitrary ¢ > 0 and for a particular multiple &' of d. Since ¢+ A" is an

admissible sequence, proposition 3.15 gives T(q) > +, but no information
about T(q).

iii) Assume now \; > v; (i =1,...,7). Note first that y"(q) = L(q): either A; = 15
for i = 1,...,7 and the solutions 4" = 7~ = 7, coincide, or "= 7" and
[” =, Take now 5 > 0 arbitrarily. Provided y is a C-SAMF lemma 3.9

and lemma 3.10 yield
S{f(q)(wﬂl > 640((], a, ba s ‘]5’) =0

for all § > 0. Hence Z(g) > v — 1 and the lower bound is also valid for I'(g).
A similar argument applies to the case \; <wv; (i=1,...,7). o
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3.3.2 Grid-Regularity

Of course, the value of T(g) is determined by the proposition above as soon as
TW(g) = TM(q) and T?(g) = T)(q) are given. In the case of ordered SAMFS less
assumptions give even the grid-regularity of T'(¢):

Corollary 3.2 Let p be a SAMF with \; > v; (i = 1,...,7) and let ¢ be a real
number for which TM(q) s grid-regular. If ¢ < 0 assume in addition that y is
vertically centered. Then T(q) is grid-regular too and

Y ()‘i/Vi)T(l)(q) 0 =1

i=1

For \;=v; (i=1,...,7), the formula for T'(q) reduces to the earlier equation (2.22)
YN =1
i=1

Proof Lemma 3.9 holds although 1 is only vertically centered. This is obvious since
J5* = J5. Moreover, 7*(q) = L(g) = I'(q) = 7*(¢) and proposition 3.16 proves the
claim. o
Also the singularity exponents of an arbitrary SAMF are grid-regular, provided
TW(g) and T?)(q) are. Though this may not be surprising, the proof needs a new
idea.

Theorem 3.3 Let u be an arbitrary SAMFE. If ¢ > 0 is such that T"(q) and T (q)
are grid-regular, then T(q) is grid-regular too and

The assertion holds also for negative q provided the measure is centered.

Remark The condition T"(g) = T®)(q) is certainly satisfied for SAMFs with
self-similar projections.

Proof Take ¢ as in the statement and set a = TW(q), b = T?(q) for short.
The equality T =T' is immediate. To prove the grid-regularity some preparation is
needed.

i) First, let us prove a kind of monotonicity of o: if 6(g,a,b,7,1;) < 1and y < a+b,
then
a(g,a.b,7,J5) <1 (3.23)

for all § > 0. Recall the recursive construction of J; (2.4) on page 34. The
proof is by induction on this construction. For J(1) = I; (3.23) is trivial.
Assuming o(q,a,b,7, J(m)) <1 the same will be verified for J := J(m + 1).
It is enough to know

U(qv a, bv Vs J(m)) : J(Q! a, b! e Il) Z U(qy a, bv s J)‘
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and therefore enough to know, that

a,, y—a a —a b v=b
Aty -o(q,a,0,7, 1) > Z ik Vi + Z Vigk Aisk| s
xkeJt ixkeJ—

for any 4 € J(m)" and mutatis mutandis for i € .J(m)~. Set j = ik for short
and pass through the possible cases:
)‘i > Vi, Ak > : JE JJr, /\lall_[fia = ()\ljal/ﬂia)()\kﬂl/k’k“)
/\k < Vg, )‘j > Vj: JE J+7 /\jan’Y_a < (/\ial/ﬂ_a)(l/kb)\kﬂ’;b)
ASvs JETT T <O m AT

Here '~ > 47~ for y > o was used, and (3.23) is proven. Similarly
U(qx a, b7 s JJ) > 1
for all § > 0 provided (g, a,b,7,I;) > 1 and 7 > a+b.

ii) To get an intuition note that any + satisfying (3.23) must by proposition 3.15
resp. lemma 3.10 be greater or equal to I'(q). However, it will even be proven
I'(q) = limv(J;), where 7(.J5) denotes the unique solution of

0(q7 a, b7 7(‘]5)7 JJ) =1
This property of v(J5) will render an estimate of o(q, a,b,7, J;) for all 4.

iii) Fix § > 0 for the moment and assume 7(J5) < a +b. Certainly

.
L= it =y Pi- wifl,
i=1

i€Js
again by the construction of J;. Let s := #J; and let j : {1,...,s} = Jj,

I+ j() be an enumeration of J;. Furthermore set w; := w;q) and pj := pjq),
and denote the relevant values of the associated multifractal

by ¢*, S:.*(¢g), T* and so on. In particular I} = {1,...,s} corresponds to
Js and 0*(q,a,b,7,I) = o(q,a,b,7, J5). On the other hand, p* = p by the
above invariance, which means that only a coarser IFS was chosen for the
same multifractal. Thus all geometrical values coincide, e.g. S.*(q) = S.(q),
T*=T,T%" = T™ and so on. Now apply (3.23), lemma 3.5 and lemma 3.6
to the coarser IFS. By definition of +(J;)

U*(qy a, bv ’Y(Jﬂ)y JE*) S 1
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for all £ > 0. Given 7 > 0, S.*(¢)e?/)*" is bounded from above independently
of & > 0. Thus T*(q) < 7(J;) + 7. Altogether

T(q) =T"(q) < v(Js)-

Mutatis mutandis the assumption 7(.J5) > a + b leads with lemma 3.5 resp.
lemma 3.9 to
T(q) 2 (-

iv) After all these preliminaries let us prove the assertion of the theorem. Take first
the case y(I;) < a+b. Then

U(q!a7 b,"/(]}), JJ) <1

by (3.23) and, since o is decreasing in 7, y(J;) < v(I;) < a+b. Consequently,
T(q) < Yint := infgsg (7(J5)) by iii). On the other hand,

o(q,a,b, %, Js) > 0(q,0,0,9(Js), Js) = 1
for all § > 0 and by lemma 3.5 resp. lemma 3.9 T(q) > ~isr. This yields indeed

T(g) = T(q) = inf (+(J5)).

v) Ify(11) > a+b then T(q) > Youp := Supsso(7(J5)) by iii). With lemma 3.5 resp.
lemma 3.6 and

0(a, 0,0, Youps J5) < 0(q. 0,0, (J5), J5) = 1
for all § > 0, which leads to T(g) < s and

T(q) = T(q) = sup (v(J))-

>0

3.3.3 Differentiability

Let us turn to the question of differentiability. For ordered SAMFs the answer is
readily given by corollary 3.2 and the implicit function theorem: the regularities of
TW resp. T@ carry over to v*(q) resp. v~ (¢) and hence to T itself.

For general SAMFs 7y(¢) has to be taken into account as well. Since 7y depends
C' on ¢, the only difficulty is at values ¢ where I' switches from one of the three
candidates 7, v~ and 7y to another. In this context we can prove at least:

Proposition 3.17 If TW(q) is differentiable in a neighbourhood of gy, then T'*(q)
has the same property. Similar for T® and T~
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Proof Here, the dependence of y (3.12) on ¢ has to be expressed explicitly:
T
Xla,7,4) = Y pt A
i=1
For ordered SAMFs the assertion is obvious. Thus assume without loss of generality

A <wvpand A > v,

i) The pair of equations x(a,7,¢) = 1, x.1(a,7,¢) = 0 is uniquely solved by some
(ag,70) depending on ¢, where qq is actually not of interest here. Since

X1 X2
det =- >0
( X1 X2 ) s

at (a,7) = (ag, ), the solutions ag and 4o depend differentiably on g. Taking
the implicit derivate of the first equation and observing y; = 0 yields

d x.3(a0,70,q)
Loi(q) = —2=—"=. 3.24
ial) X2(a0,7%,9) (8.24)

In particular o € C*.
ii) From x(T™W(q),7*(¢),¢) = 1 and y > 0 follows

Xa(TD, 7%, q) + xa(TW, 7, ¢)(TW) (g)
X2(I'D,7+,q)

e =~

(3.25)

So, 7*(¢q) is differentiable near g.

iii) Since y1(T™ 7, ¢) is a continuous function of ¢ near gy, a switch from 7(q)
to 7" (q) in the value of T"(g) is only possible at a zero g of x ;. But then
Y(7) = v+ (@) by (3.19). Moreover, ag(g) = T (q) is easily verified, and the
derivates of 7y and 7™ coincide by i) and ii).

iv) The argumentation for I'™ is similar. <&
This proposition has consequences:

o The differentiability of () and T® carries over to I' = max(I'f,T'") except
at points where the maximum causes a wedge. This may only happen when

7Ha) =7"(q).

o With the possibility of wedges a completely new feature appears, which is
not encountered among the singularity exponents of SMFs. This may have
consequences for the search of models.

o There are IFS, i.e. multiplicative cascades, producing nondifferentiable singu-
larity exponents, not only carefully constructed examples.
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The section closes with an astonishing and satisfying result: At ¢ = 1 one would
expect a wedge, since 77(1) = y7(1) = 0. Nevertheless T is always differentiable
at ¢ =1 and the interesting value D can be given, provided that T and T® are
grid-regular and C* near 1.

Corollary 3.4 For any SAMF p the following implications hold:
If ¥ pilog(Ai/vi) > 0 and T is grid-reqular and C* near 1, then
i=1

121 pi(logpi — D1 log(Ni/1y))
D1 ==

)

Y pilogy;

b}

if ZT: pilog(\i/vi) < 0 and T®) is grid-reqular and C* near 1, then
=

% i logps = Dy log(ws/ )
2

D1 == T
Y. pilog \;
i=1

)

finally, if ZT: pilog(\i/vi) = 0 and T and T? are grid-reqular and C" near 1, then
i=1

Yopilogpi X pilogpi
D, = i=1 _ =1
L=

i pilog A; i pilogy; '
i=1 i=1
Proof

i) Certainly TW(1) = T@(1) = 0, thus y7(1) = 4y7(1) = 0. Consequently, the
conditions in the definitions of I'" and I'~ reduce to ¥ p;log(\;/v;) > 0 and
Y pilog(Ai/vi) <0, respectively.

ii) Assume first that Y. p;log(A\i/v;) > 0 and that TW(q) is
near 1. Then, for continuity reasons, L'(q) = 7% (¢) = v*(
since 7o < . With proposition 1.19 and (3.25)

grid-regular and C"
q)=T(g)nearg=1,

X-S(Ov 0, 1) + X.l(O! 0, 1)(T(1)),(1)
X.Z(Ow 07 1) .

The case Y. p;log(Ai/v;) < 0 is obtained by interchanging A; with »; and re-
placing T(q) by T®(g).

D, = *T’(l) = *%“ﬁ(qm:l =

iii) At last assume that Y p;log();/v;) = 0 and that T)(g) and T?)(q) are grid-
regular and C' near 1. Unless \; = v (i =1,...,r) which is a trivial
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case—A; < v; and A, > v, can be assumed without loss of generality. Then
70(1) =~7(1) = 0 by (3.19), which leads with (3.24) and ii) to

.
2 pilogp;
i=1

Y pilog i
i=1

0@z = 27 @l = 27 (@l =~

SoI'* and I'~ have the same derivate and the same value at 1, and since they
are continuously differentiable near 1 (Prop. 3.17) the mean value theorem of
calculus shows that their maximum is differentiable at 1 as well. &

3.4 Box and Hausdorff Dimension

In this section simple formulas for the special value Dy = T(0) = dpoy(K) and for
the ‘almost sure” Hausdorff dimension of K are provided. While only the general
case is treated in this section, most explicit results in a slightly less general case are
spotted in subsection 3.5.2. To give some history and also for later use the inspiring
results of Douady et Oesterlé [DO] and Falconer [Fale3] are stated first.

The main result in [Falc3] can be summarized as follows: Given a linear transforma-
tion S on RY with singular values a; > ay > ... > ay, the singular value function
@7 is for positive y defined by

Qp Qg Qg Q1™ iy < d,
v/d
(1. aq)"

15 -{

otherwise,

where m = [y]. For a family Sy,. .., S, of contractive linear transformations on R
let A =A(S),...,S,) be the unique A > 0 such that

Jim (12 0%(51)
1€ln

1
Moy

Theorem 3.5 (Falconer) Assume that || S; ||< 1/3 for i =1,...,r. Then, the
unique nonempty invariant compact set

K= U Sl(K) +a; = <Sl() +a,.. ,Sr() + a,)
i=1
has the dimension
dyp(K) = dyox(K) = min (d, A(Sy, ..., S,))

for almost all (ay,...,a,) € RR™ in the sense of rd-dimensional Lebesque measure.

Remark If || S; ||< 1/3 is not satisfied replace {Si, ..., S;} by {S; : |i| = n} where
n is chosen so that || S; ||< 1/3 for i € I,. Since A(S),...,S,) = A({S; : |i| =n})
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and K is as well invariant under {S; : |i| =n} the dimension of K is still given as in
the theorem, but for almost all parameters a € R”" in the sense of dr"-dimensional
Lebesgue measure.

It is quite easy to see that A(Si,...,S,) is the limes of the sequence A, defined

through

Y oM(S) =1

i€l
Moreover, [Falc3] actually proves that these numbers A,, bound dpe (K) from above.
(This was already detected in [DO] in a slightly different context.) A comparable
situation is found in our theorem 3.3 iii), where the numbers v(.J5) bound T'(¢), and
where T'(¢) = lim~(Js).
As this relation suggests, the value A can be computed in a similar way as I'. To
this end set

A if0 <y <1, v if0<y<1,
ei(n) =4 Ay if1<y<2, and 6i(y) = AT il <y <2,
()\iVi)A//Q if2< Y, (Vi)\i)wm if2< Y-

Theorem 3.6 (Value of A) Let Si(z,y) = (di\z, (viy) (i =1,...,7) be the lin-
ear parts of a set of diagonal affine contractions as in (3.1). Then

A(Sy, ..., Sy) = max(AT, A7),
where AT and A~ are uniquely defined by
T r
Y @i(AT) =1 resp. Y 6;(A7) =1
i=1 i=1
In particular, if \; > v; (1=1,...,7), then A = A™.

Remark For the actual Hausdorff dimension of certain SAMF see (3.28) on p. 104.
Proof We proceed in a similar manner as in section 3.2.

o) First, if AT > 2, then ¥ Ay > 1, A* =A™ and ¥yeg, quJr(Sl;) =1 for all n.
Thus assume A" < 2 for the remainder.

i) By definition, ¢7(S;) equals ¢;(7) if A; > v;, resp. 6i(7) if \; < v;. For fixed v
define a probability space (I, B, P™) where P* is the product measure on B
induced by the measures

(i} o oi(7)
El%-("/)

on the factors {1,...,r} of I,. Remind ¢; = log()\;/v;). The random variables
Xpilo =R ig—a,

are independent and identically distributed, and their common expectation
amounts
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r _1 T
X = (X o) Yanl)
i=1 i=1
Defining a product measure P~ and random variables Y, the same way but
with # replacing ¢ and d; = —¢; replacing ¢;, yields for fixed y

Y S) =Y e+ Y bi(r) =

i€l iclf i€l

(Z% )P+¥1+ X, >0+ (Za ) 4+ Y, >0

(compare lemma 3.12). The way to proceed now is: assume first that A* >
A~. Then Ea+[X;] > 0 by ii) below. Since the positive function 6;(-) is
monotonous, one finds
1/n
PP+ X > 0 < (Y62 (S) "<,
i€l,

thus A* = A(Sy,...,S,) by the Central Limit Theorem. Similar considera-
tions yield A~ = A(Sy,..., S,), provided A~ > AT,

ii) Assume Ex+[X,] < 0. The claim is A* < A~. For the proof a ‘hidden’ variable
a has to be introduced. Therefore, modify (3.12) to

.
a —a
"y) = Z)\T l/i’y .
i=1
Different cases are considered.

1. 0 < AT < 1: then A~ < 1 may be assumed. By assumption
Xa(AF,AF)

X(A*, A7)
and by convexity x1(a, AT) < 0 for all a <A™, So

Em—[ n]— <0

¥(0,A%) > y(AT,AT) Z)\y—l—Zl/ =

and AT <A™,
2. 1 < A* < 2: this time the expectation Ex+[X,] has the same sign as
x1(1,A%), 50 x.1(a, AT) < 0 for all @ < 1. Assume first A~ < 1. Then
r
x(0,A%) > x(1,A%) = Z)\VMI =Y =
i=1
and A* < A~ which is actually a contradiction. If A= > 2 there is
nothing to prove. So assume finally 1 < A~ < 2. Then

X(A7 - 17A+) > X(17A+) =1= Z’/i)‘?iil = X(A7 - LAi)
i=1
and again AT <A™
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iii) Finally assume \; > v; (i = 1,...,r). Then A*™ > A~ since E, > 0 with
equality only when \; = v; (i = 1,...,r). This completes the proof. O

The relevant values A™ and A~ are quite simpler defined than T and '~ (3.22). The
reason is that, due to implicit properties, the expectations of the random variables
involved have the ‘good’ sign. Therefore, it is not necessary to apply Chernoff’s
theorem. Some inherent geometrical properties allow us to simplify the formula
for the box dimension of the support of a SAMF in a similar manner. This will
make it possible to compare the ‘sure’ box dimension Dy with the ‘almost sure’

A(Slr o -ySr)-

Theorem 3.7 Let y1 be a SAMF with support K and assume that D®) = dyo (K®))
exists for k =1, 2. Then

‘ dhox(K) = max(d*, d") ‘

where d* and d~ are defined through

T T

M (g+—pM) )\ (d--D@
Z)\iD I/Z'(d D) =1 resp. Zl/iD /\l-(‘i b®) =1
i-1 i=1

In particular, if \ > v; (i=1,..., 7), then dyox(K) = d™.

This formula covers results from [GL] and [Mu]. The following lemma allows an
easier handling of T. For SMFs it is not needed since then 7" =+~ =T for all q.

Lemma 3.18 Assume that not all ¢; = 0, i.e. p is not a SMF. For convenience
write a =T"(q), b=T(q), 7" = v*(¢), v~ =77 (¢) and T =T(q). Then,

7" <a+besy <a+beT=max(y",y) &l <a+b.
Proof The functions y and ¢ from section 3.2 will be in use.

i) Assume first that v* < a+b. Then

T T
YAt <N =
i i

and hence 7~ < a+b. Similarly v > a + b iff v~ > a +b. This shows the
first equivalence.

ii) Next the easy case 7 =+~ = a4+ is treated: by direct computation y 1(a,a+
b) =—-v(ba+ b) and so at least one of them is greater or equal to zero. This
yields: I =% or I'” =~~. Thus I' = a + b, what was to show.
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iii) Now take the case 7" < a+band 7~ < a+b. As will be shown at once, 7" > v~
implies x1(a,7") > 0 and so vy~ =T =T. The symmetric argument for the
case 77 < 47 yields indeed I' = max(y™,77) as desired. The proof is by
contradiction and resembles the one in theorem 3.6: assume y(a,7") < 0.
Then y;(z,7") < 0 for all z < a by convexity and

X(7 =b,7%) > x(a,77) =L=w(b.y7) = x(v" = b,77).
The monotonicity of y in the variable v yields 7 < y~.

iv) Next take the case v© > a+b and v~ > a +b. Now the aim is to show that T
cannot equal max(y*,~7). (This is not true for SMFs.) The idea is to prove
that 7™ > v~ implies y1(a,7") < 0, and so I'" = 75 < 7™ by (3.19). So
assume y1(a,7") > 0. Strict convexity implies x1(z,7") > 0 for all z > q,
x(v=0,7") > x(a,7") =1 = x(y~ — b,7") and indeed v© < ~. This
means in particular that if y* =y~ then I’ = ~,.

v) It remains to show, that 4+ > a + b, x.1(a,7") < 0 and ¥1(b,77) < 0 imply
Yo > a+b. Assume the contrary, i.e. 7y < a+b < min(y*,~7). By lemma 3.14
ii) x.1(a,-) and 1 (b, -) have no zero in [yo, min(y",7")]. Hence 0 > x.1(a,a+
b) = —1p(b,a +b) > 0 which is impossible. <&

Proof of the Theorem In the case of a SFM it is enough to refer to (2.13). For a
SAMF corollary 2.1 and theorem 3.3 imply dyox(K) = T(0) = I'(0). Of course d* =
7+(0), d~ = ~v7(0). By lemma 3.18 it is enough to show T(0) < TM(0)+T®(0), i.c.
dhox(I) < DY + D@, But this is immediate since K is a subset of K(xK®. For
general ¢, however, there is no a-priori inequality between T(g) and T () +T®(q)
(see Ex. 3.2). Finally use corollary 3.2. <&
The theorems 3.5, 3.6 and 3.7 fuse to the following considerations concerning the box
dimension of self-affine sets: let w;(z,y) = Si(z,y) + (u;,v;) be diagonal affine con-
tractions (3.1) and K their invariant compact set. For simplicity assume in addition
that || S; || < 1/3. The projections K®) are invariant under the IFS (w; ... w,(V)
by lemma 3.3 and Falconer’s theorem can be applied.

o When ¥\ < 1 then dyp(K®) = A* for almost all (uy,...,u,) € R". If
the latter holds then A* = d*. If, in addition, A~ < AT, eg. if \; > 1;
(i=1,..., 7), it may be concluded with no further assumption that

dip(K) = dyox(K) = A(St,...., S;) = dp(K1)
since dyp(K) > dyp(K®) and dyos(K) < A.
o [f YN > 1and Yui > 1 then dyp(K™) =1 for almost all (uy, ..., u,) €R'

and almost all (vr,...,v,) € R". As before AT = d* and A~ = d", and

assuming the existence of a round open set one finds

dbox(l() = A(Sl, PN ST)
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Thus, the condition in proposition 4 in [Falc5] can considerably be weakened in
the case of diagonal affinities. This is of course a consequence of the common
invariant subspaces of the maps w;.

Finally, two recent results should be mentioned. First, Falconer [Falc5] provides a
lower bound d_ of the Hausdorff dimension of self-affine sets. Using the notation in
theorem 3.5 this bound holds for all (ay, ...,a,) € R such that the images w;(K)
are mutually disjoint. As examples show, d_ can be quite close to the upper bound
A of the box dimension. On the other hand, since d_ as well as A do not depend
on the translations a;, they must cover the worst cases and cannot be expected
to be equal. A tedious but straightforward analysis of diagonal affinities gives an
explicit formula for d_ and reveals indeed, that d_ < A unless all \; = v;. Secondly,
Gatzouras et Lalley [GL] give explicit formulas for the exact Hausdorff and box
dimensions of certain self-affine sets in the plane, which form a class of supports of
SAMFs. Their result on the box dimension agrees with ours.

3.5 Centered Self-Affine Multifractals

Almost all of the SAMF's considered in this section are centered with self-similar pro-
jections. Consequently the formula for the particular singularity exponents provided
by theorem 3.3 can be solved explicitly or can at least be treated on a computer.
Many examples will be discussed such as the Sierpifiski carpets and products of
measures. Furthermore, theorem 3.3 is related to recent results, emphasizing its
relevance in contemporary research.

3.5.1 Numerical Calculation

Provided the projections () and p® of 1z are self-similar, their singularity exponents
are grid-regular and can be determined by solving implicit equations. Consequently,

the exponents of a C-SAMF can be calculated and plotted by a computer.
For the moment assume only that w™(0) N w]-k)(()) # 0 implies w® = w](-k)

(k = 1,2). Denote by s resp. ¢ the number of distinct maps wf(l) resp. 11)52). Let

{wf,..., w}} be an enumeration of {wgl) ..... wM} and let {wy,..., w; } be the

) s Wp ) 3

same for {w\”, .., w®}. Furthermore, set

=Y v A =Lip(wf) (i=1,....s)
j:wj(l):w?'
and
=Y b v, =Lip(w;) (i=1,....1).
j:wj(i):w;
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With lemma 3.3

W =Y pul p=Y( Y p)uiu
st i

j:w;l) uf
what can be expressed as
WO = Gut,. . ubipt ) (3.26)
By assumption the interval 0, 1] is a basic open set for (w,...,w}) as well as for
(wy,...,wy ) on the respective axis. Thus the projections of the measure are in fact
self-similar. Corollary 2.5 with d = 1 yields the grid-regular T*)(q):
s t
Y =1 ad Y () ) =1 (327)
i1 i=1

In particular, theorem 3.3 applies for all ¢. The three candidates 7+, 7~ and 7o can,
therefore, be numerically determined as well as the relevant conditions, to obtain
I'. To this end some remarks: it may be helpful to use the variable ¢’ rather than
7", translating the transcendent equation into a polynomial one. Moreover, the
calculation of 7y as well as some tests to determine I'* can often be avoided due to
lemma 3.18.

25 2/15

4/15

15

Figure 3.7: A general self-affine multifractal with self-similar projections (Ex. 3.1).
Its construction is revealed on the left. Though lemma 3.8 cannot be applied, the
SAMF can be recognized as centered by considering the coarser construction by
w;;([0,1]%). On the right an image composed of 30000 points obtained from a
random algorithm.

Finally, if it comes to compute 7y, note for good first approximations of the solution
(ag, 7o) of (3.18) that

TW(g) <ap <7 =T®(g) and TW(g) +T®(g) <7 < min(y",77),
provided y.1(TM(g),v*,¢) < 0 and x.,(y~=T®(q),7~,¢) > 0. The first statement
is a simple geometric fact: compare with figure 3.6, where the positions of 7" and

7~ have to be interchanged due to the respective signs of y ;. The second statement
follows from lemma 3.18.
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Example 3.1 (A General C-SAMF) Take

wi(z,y) = (z/2+1/3,y/6) wa(r,y) = (—x/3+1/3,y/3+1/6)
(z,9) (x/2+1/3,y/34+1/2) wy(z,y) = (z/6+5/6,y/3+1/2).

with the round open set ]0,1[* (see Fig. 3.7). The projections K* are then self-
similar. To establish a corresponding SAMF as centered, one has to consider the
coarser IFS w;; with ij € {1,...,4}* and to observe that w, reverses the orientation
on the z(M-axis.

Choose first the probabilities p; = 1/5, p, = 4/15, p; = 2/5 and py = 2/15. Then,
a numerical evaluation shows that I' = 7" for all ¢, Dy, = 1.106, Dy = 1.309,
Dy =1.287, D_y = 1.636 and F(Dw,) = F(D_s) = 0 (see Fig. 3.8).

............ )

\ g

1.1 1.2 1.3 1.4 1.5 1.6

Figure 3.8: Example 3.1 with py = 1/5, p» = 4/15, p3 = 2/5 and p, = 2/15:
Generalized dimensions and spectrum, the latter obtained as a parametric plot (1.22)
with —35 < ¢ < 35. Note the slow convergence of D, to Dy = 1.106, in particular
compare Ds; = 1.138 with —T"(35) = 1.108.

Figure 3.9: On the left the generalized dimensions and on the right the spectrum of
example 3.1 with p; = py = p3 = py = 1/4. Note how the concavity of the spectrum
is disturbed but not distroyed.

Choosing then the probabilities all equal to 1/4 results in I' = 4 for ¢ < 1.838
and [ = 7 otherwise, in particular ' = I'* on all of R. Furthermore, Dy, = 1,
Dy =1245, D_y, = 1.728, F(Dy,) = 1/2 and F(D_y) = 0 (see Fig. 3.9).

Thus, T is in both cases continuously differentiable, and consequently the spectrum
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is in fact grid-regular. Note how in the second choice of p; the change of T' from y*
to Yo disturbs the concavity of F', but does not distroy it. O

3.5.2 Carpets and Subsets of Given Local Holder Exponent

To present a first special kind of SAMFs consider a (fixed) IFS of diagonal affine
contractions having the following three properties: K is self-similar, \; > v; for
i=1,...,r,and |0, 1[*is a basic open set. Denote by y(p) the corresponding SAMF
with probability vector p. Then, the invariant set K = supp(p(p)) does not depend
on p and the information dimension D;(p) of u(p) is provided by corollaries 3.4
and 2.7.

Theorem 3.8 (Gatzouras, Lalley [GL]) With the notation from above:
din ((p)) = Di(p)

dup(K) = max{D;(p) : p is a probability vector} (3.28)

Moreover,

6= dup(K) = dys(K) 0 0<mi(K) <o s Y A2 =1(i=1,...,5)

e zuj(l):wi+
Our contribution are the singularity exponents, in particular dye(K) which agrees
with the value found in [GL] (see theorem 3.7). Explicit formulas for T(g) are
obtained under almost the same conditions as above, i.e. provided the underlying
IFS has the following two properties: K is self-similar and A; = A > v = y;
(i =1,...,r). For convenience we will address the corresponding multifractals as
carpets.

Corollary 3.9 (Carpets) Let pu be a carpet. If ¢ <0 assume in addition that p is
vertically centered. Then T(q) is grid-regular and, with the notation of (3.26),

e )

1 1 :

T ———]lo

(@)= (logu log)\) o (Z(n ) log
Proof Apply corollary 3.2 and use that (1) is self-similar (3.26). &
There is a number of notable values of D,. With (3.26), the box dimension of a
carpet is

log s log(r/s)
log(1/A) ~ log(1/v)’
This formula was already found by McMullen [Mu] and Bedford [Bed1] for a special
kind of carpets, the so-called generalized Sierpiriski carpets.

DO = dbox(K) = (329)
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Furthermore, we take the chance having explicit formulas for a study of the ‘most
probable’ resp. ‘most rarefied” points. By straightforward calculation (v; = v):

Dy = (@ - @) log (InaX(pf, e 71):)) + @log (Inax(p17 .. ,Pr))

1 1 1

N n(pt + - ;
o = (logA 10gy>10g<mln(p17-"aps)>+logylog(mln(plv---vpr))!
and

F(De) = (- —)log(u) - —— log(u)

logry  logA logv

1 1

N o
FD-) = (o5~ o) 1807) = 1o os0)

where u(*) resp. v(*) denote the number of maximal resp. minimal pgﬂ

In order to give a heuristic argument consider a cylindrical set V; (i € J;,). This is
essentially a \pw;-rectangle and can be subdivided into squares of side d, = ;. The
k-th square, counting according to the orientation induced by w;, has the measure
pi (k= Dwi/ g, kvi/A). But p® is a SMF, thus Do) = min(logp?/log )
and the pM-measure of an e-box on IR amounts at the most el (U, i.e. when the
box coincides with some w;V([0, 1]), where logp} /log A}, = Dy(") for all letters ji
of j.

Choosing ¢ = v;/); it can be seen that the measure of a d,-square B contained in
Vi amounts at the most

u(B) = py- (/7).

The number of such squares is approximately (\;/v;)" 7 where F .= p(D, M),
Thus, taking the squares for d,-boxes, ji(B) = 6,7 is only possible if

pi= )\iDm(l)Vti,Dm(l) (330)

holds, where i passes through all letters iy, of i. (Otherwise, i.e. if (3.30) would not
hold for all 4, there had to exist a letter [ with p; greater than the right-hand side
of (3.30). Considering the squares in V; for i = {*...[ reveals that Dy, would not
be the smallest Hélder exponent in contradiction to theorem 1.2. Consequently

o B € Gy, < p(B) = 0,)

=7 3.31
n—00 ]0g§ 1 ( )

where

A (3.32)
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the sum being taken over all i satisfying (3.30). Though the argumentation is not
rigorous in general, it is certainly ezact for carpets with logv;/log \; = const € @,
choosing d,, to be a convenient power of v. Similar for —oc.

Often v = F(Dy) is the solution of (3.32). Although (3.31) gives then a satisfactory
interpretation of F(Dy), it is important to note the following:

o The assumption that the measure is ordered was essentially used to derive a
simple formula for 7. For an ordered C-SAMF's see examples 3.3 and 3.6.

o The equation (3.31) describes merely a fact concerning numbers of boxes with
particular properties. It says nothing about the dimension of a set whatsoever.
Compare with example 3.3.

Now let us check the formulas for carpets. Straightforward calculation yields D..(!)
= log(max(p;))/log A and F{) = —logu™/log \, and thus indeed

D™ Doe—DoeV .
i Vi = max(p;)
and .
(1) o 1w
My F0=ES - gy
ut

for all i. So (3.30) chooses all maximal probabilities p; and (3.32) is indeed satisfied
by 7 = F(Dy). Provided the u maps w;, with the maximal probabilities are arranged
in the u™ columns corresponding to the maximal p;, then their invariant set K’ =
(wiy, ..., w;,) may fairly be called the set of most probable points. Moreover, its
box dimension is just F(Dy,) due to (3.29). The similar holds replacing oo by —oc.
However, if the maps are arranged in a different manner it is not as simple to give the
‘dense’ parts of y1. So the interpretation of F(a) as the dimension of subsets K, with
‘local Holder exponent o’ (compare Ex. 2.10) has to be carried out cautiously. On
the other hand, it has to be referred to [S]. There it is proven that under restricted
circumstances F(a) equals indeed the Hausdorff dimension of K, ‘almost surely” in
the sense of theorem 3.5.

Example 3.2 (Three Carpets) Take

wi(z,y) = (2/3,y/4) + (uv;) (i=1,...,6)

with the following entries (u;, v;) in rising order

(0,0) (2/3,1/4) (0,2/4) (2/3,2/4) (0,3/4) (2/3,3/4).

The TFS is centered with respect to the open set O' =] — 1/2,3/2[x]0,1] (see
Fig. 3.10). Choosing p; = py = 1/4, p3 = ... = ps = 1/8 gives pj” = 1/2, p; = 1/4,
DW= log2 D@ =1

! log3
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18 8 B 59

8 8 5 U4 110 T} 9
U4 15

U4 20

Figure 3.10: The construction of the three carpets of example 3.2. The IFS on the
left is centered with respect to the round open set | —1/2,3/2[ x]0,1|, the others as
usual with respect to the unit square.

and
_(log2 1 1 2-3¢ | 9l-2

Hence:

o Although 4V and 1® are both homogeneous 4 is not (see Fig. 3.11).

1.6

Figure 3.11: On the left the generalized dimensions and on the right the spectrum
of the first carpet appearing in example 3.2.

A different choice of probabilities p; shows that there is a priori no inequality between
T(q) and TW(g) + T?)(q) unless ¢ = 0 (compare theorem 3.7): corollary 3.9 may
be rewritten as

log (X2, (47)7 Sy (7)) — o ( X 7)
log v '

T(q) =TW(q) + T (q) +

Taking w; as above but with the following entries (u;, v;) in rising order

3,00 (U318 0.2/ (J3204) 23,214 (1/33/4
and with py = 1/20, p, = 1/5, p3 = 1/5, ps = 1/4, p5 = 1/10, ps = 1/5 one
obtains T(g) < T (g) + T?(q) for large |g|. Finally taking p; = py = ps = 0 (Le.
omitting the corresponding maps) and ps = 1/3, py = 1/9 and ps = 5/9 leads to
T(q) > TW(q) + T?(q) for large |g|. Thus



108 CHAPTER 3. SELF-AFFINE MULTIFRACTALS
5
it o e PRI AP
iy A S I ML 3
i U
iy
BE

(11 Be gl

TRt

L

B 7

Figure 3.12: Images of the first two carpets appearing in example 3.2, provided by
a random algorithm.
o The only a priori inequality between T(q) and TW(q) + T?(q) is at ¢ = 0.
O

3.5.3 Products

The C-SAMFs of the second special type are not necessarily ordered but still possess
a simple expression for their generalized dimensions and their spectrum: the product
of two self-similar multifractals on R. Such measures are considered in [Z].

Corollary 3.10 (Product Measures)

Let ) = <w1+(7), e MIE;);pf(f), . ,p:r(i;)) be two given SMFs on R. Define
wij(@,y) = (i (@), w; (v) by = pip; (3.33)

for all pairs (i) € {1,...,s} x {1,... ¢} ~{1,...,7}. Then

1= (W), - Wst)s PAL)s - - -5 Dist))

is the product measure of u™ and p~. Moreover, i is a C-SAMF, ") =y, u® =
"
T(q)=TV()+T(q), D, =D, +D,”

and
F(o +a®) = FO (V) + FP (o)
for o® = —(T®Y(q). Pinally note that T and F are grid-regular.
Remark The relation T(q) = T (q) + T (q) holds of course for general products

of multifractals, and if ™ and p~ are CMFs then y is one too. For more information
about the dimension of the product of metric spaces we propose [W] and [Tt].
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Proof Instead of giving the straightforward general proof of the additivity of gener-
alized dimensions theorem 1.1 shall be applied, for it provides also the grid-regularity.

Certainly w(ij)(l) =uj, 'w(ij)(2> =w; and
t
Y pw) = B =0
(i5) :W(i_,):wz' J=1

Thus ¢V = i by (3.26) and lemma 3.3. Similarly u® = pi~. Almost evidently 1 is
the product measure of (V) and p® by construction. Straightforward computation
yields v* =~ =TW + T, Lemma 3.18 completes the proof. o

3.5.4 A Further Explicit Formula

A third kind of C-SAMFs with explicit formula for T'(q) is the following.
Assume that the projections K®) are self-similar, furthermore, that » = 2 and that

A= )\, v = v (i:L...,Tl)
No=v, o= X (i=n+l..0)

for some integer ry strictly between 0 and r. Without loss of generality it is possible
to write

(i=s1+1,....9)

/\er = A (izla"'vsl) )‘LJr =
A (i=ti+1,....1)

v
vy = A (i=1,....t1) vy = v

for some integers s; < s and #; < t. Solving equations of second order gives

i=1 i=s141 i=

¢( SEP 1 S @r- Sy
)\T(IJ _ 1

B 2% ()

i=s1+1

and similar for T®)(g). Furthermore,

i=r1+1 i=ri+1

\/( ZT: piQ)\T(l))Z +4 ilpiq/\fT(IJ - zr: piq)\T(U
Xﬁ =

2 ri piaA-T®
i=1

Moreover,
-1 T T
Yo=1——log 4 Zpiq Z ) |-
log(Av) ( (izl )<i:r1+1 )
Finally, the tests whether ['t = 4 resp. [~ = 7~ reduce to
T1 T T ; Tl
Zpiq > 2)\3T(1)( Z piq)2 resp. Z piq > 2/\3T(2)(Zpiq)2. (334)
i=1

i=1 i=ri+1 i=ri+1
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Example 3.3 (A ’Circular’ Multifractal) Consider the IFS

wi(z,y) = (z/2+1/4,y/4) wy(z,y) = (z/4+3/4,y/2+1/4)
ws(z,y) (z/2+1/4,y/4+3/4) wy(z,y) (z/4,y/2+1/4)

supplied with p; = ... = py = 1/4. It has self-similar projections K ) with =N,
p; =vi (i=1,2,3). Thus Y and p® are homogeneous SMFs, and lemma 3.8
applies to show that p is centered (see Fig. 3.13). Observing dyox(K™) = 1, one

: -

ua U4

|

Figure 3.13: The first two iterates in the construction of the ‘circular’ multifractal
(see Ex. 3.3).

obtains the (grid-regular) singularity exponents T (¢) = T®(q) = 1 — ¢. From
this y* = 74~. The particular tests in the definition I'" and '~ coincide and read as
yt < 2TM = T 4 T@ by direct computation, or equivalently as 1 > 29! using
the reduced form (3.34). All this allows the conclusion

T(g) = v =32 —log(v1+251-1)/log2 ifg<1
= Y =4/3-1-9) otherwise.

In particular
e The grid-regular T is C! but not C? (see Fig. 3.14).
e I'=y &9t >TW4+T® & ¢ > 1 (compare lemma 3.18).

o The (grid-regular) spectrum F comes to a sudden stop at « = Dy = Dy, = 4/3.
This rises the question, where the ‘most probable points’ can be found.

We take the opportunity and calculate explicitly. Let §, = v" and take i € JJ ie.
Ai > v; = v". Due to the special entries of the maps w; the set V; fits into the d,-grid.
Subdiv iding it into squares of side v yields indeed d,-boxes. On the other hand,
every §,-box mth nonvanishing measure lies in some V; with j € J;,. Moreover,

since ;Y and p® are homogeneous and measure just the length in [0, 1], all boxes
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Figure 3.14: On the left the generalized dimensions and on the right the spectrum
of the circular multifractal (Ex. 3.3).

in V; have the same measure. Letting m = [i| and k = #{l <m : i, = 1 or 3} one
finds m + k = 2n due to v; = v" and
u(B) = pifvi/A) =277

for every dp-box in V;. Observing \; > v; this value is found to be maximal for
=m/2=2n/3. But then A\ =y and Vi is a d,-box by itself. Since i was arbitrary

max{u(B) : B € Gs,} =27 = (3,)** = 6,7~

There are as many d,-boxes of this kind as words i with \; = »; = v". Observing
m = 4n/3, Stirling’s formula leads us to

log#{B € Gj, : u(B) = 6,"~} _ log (21” ( m/2 )) N log (2"",/27r/m2"')

—logd, nlog4 - nlog4

which converges to 4/3 = F(Dq). This agrees with the intuitive understanding of
F(Dy). But the equations (3.30) and (3.32) are not satisfied. To get a better under-
standing where the ‘most probable’ points lie, follow the words ¢ which contribute
to the ‘heavy boxes” above: at the first stage of the construction the C-SAMF seems
to be perfectly symmetric giving no reason for more or less probable parts. Only
when regarding 1 as the invariant measure (w;;p;) ji=, differences appear and the
equation (3.30) selects exactly the words j with A; = v;. See figure 3.13 for t = 2.
The equation (3.32) reads then as S

Tt =2 ) )

and 7 — F(Dy) as above. Moreover, one may consider the invariant sets L; (t
even) generated by the IFS {w; : [j| = t,A; = v;}. These sets are in fact self-
similar and of dimension 7, by (2.13). The union K’ of the increasing sequence of
compact sets L, has the dimension

dHD(KI) = sup dHD(LL) = F(Doo)
telN
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From the considerations above it is fair to call K’ the set of the ‘most probable’
points. Note in addition that the points of K’ certainly possess the local Holder
exponent D..

Turning now to D_,, the minimal measure of a d,-box is found for k =m = n, i.e.
when 7 € {1,3}™

min{u(B) : B€ Gy} =27 = (5,)%% = 5,

Applying the symmetric arguments for \; < v;, there are 2-2"(\/v)" = 25, * boxes
of this kind, yielding

. _ 5 Do
log#{B € G5, : p(B) ="}
—logd,

F(D_).

On the other hand, these boxes form a decreasing sequence of compact sets converg-
ing to K" = (wy, w3) U (wy, wy). Certainly K" is the set of all points z for which the
unique d,-boxes By (x) containing & have eractly the measure 6,”-= for all n. This
is a strict requirement and does not exactly match the definition of local Holder
exponent D_.: in the limit too strict and in the geometry too loose. As the union
of two self-affine (and even self-similar) fractals, K" has the dimension

dyp(K") = dyox (K") = 1/2.

What seems to be a contradiction to the value F(D_y) = 1 is readily explained.
Since K" is captivated in two line segments most of the boxes appearing in its
construction above do not intersect it at all. Still they have the desired property to
contribute to F(D_y).

L=
O

-
Figure 3.15: The circular multifractal (Ex. 3.3) provided by a random algorithm.

O

This example gives credit to the intuition that the measure is better concentrated
in squares than in thin rectangles with the same measure and the same area.
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3.5.5 Homogeneous Self-Affine Multifractals

A first and simple group of homogeneous SAMF's are the products of two homoge-

neous multifractals on R. This is immediate from corollary 3.10. In particular in

this case _
= /\kDo(l)Vl?U(Z)

for all k, analogous to the self-similar case. However, this condition is not necessary

for a SAMF to be homogeneous, as the next example will show.

Example 3.4 (A Homogeneous SAMF) Take
wl('LhU):(‘L/37y/4)+(ul7vi) (121,76)

with the following entries (u;, v;) in rising order

(0,0) (2/3,0) (0,2/4) (1/3,2/4) (2/3,2/4) (1/3,3/4).

This IFS has self-similar projections and lemma 3.8 applies. Choosing p; = 1/6
results in p =1/3, p; = 1/3, p; =1/2, p; = 1/6,

log (3794+2774677)

TW(g)=1-q TO()= g1

From this example and an earlier one (3.2):
o A homogeneous SAMF need not be a product measure.

o The projections of a homogeneous SAMF do not have to be homogeneous. On
the other hand, both projections may be homogeneous but p itself not.

3.5.6 Applications

Now that our theory has been developed we would like to present contemporary
research which is closely related. We content ourself with a narrative language and
close with an interesting example of our own.

First, [Ma2] presents results of the same kind as our theorem 3.7: The box dimension
of the graph of certain vector valued functions is obtained as the maximum of
numbers ‘measuring’ the graph in different directions. The technics used for the
proof are different from ours, using essentially the connectedness of the invariant
set.
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Further, [Koh, §4] rises the question of differentiability and tries to explain irregu-
larities. Our examples and proposition 3.17 give some answers.

The work of Falconer [Falc3, Falc5] was already mentioned. Here we contribute a
simple formula for the ‘almost sure’ dimension (see theorem 3.6).

Furthermore, corollary 3.9 is related to [Mu, Bedl, GL].

Remember also section 2.4 which embeds the results of chapter 2 in the field of
recent publications.

Finally our theorem 3.3 covers parts of recent results, i.e. it provides the box di-
mension of investigated invariant sets, which are in many cases special kinds of
C-SAMFs.

One such family arises from fractal interpolation: in [Bar] a new kind of interpolation
functions was introduced: given N + 1 data points (z;, y;) one may consider a set of

affine maps
wi(:v,y)::<zi cf-)<gyc>+<ei> i=1...N

with w;(2g, Y0) = (zi—1,¥i-1) and w;(zy,yn) = (;,y;). The compact invariant set
G of this IFS is then the graph of a continuous function which interpolates the
data. Referring to section 2.2 an illuminating picture is provided by considering the
straight line segment joining (zo, yo) with (zy, yy) and its iterated images under the
set map W. Only four entries of w; are determined by the condition above. Usually
¢; is considered as a parameter controlling the dimension of G [BEHM]:

N
If ¥ |eil > 1 and the interpolation points do not lie on a straight line, then dyox(G)
i=1

is the unique solution D of
N
Yleila” =1,
i=1

otherwise dpo(G) = 1.

However, if yx # yo and |y; — yi-1| < |yn — yo| one may choose b; = 0, freezing the
¢;. Then the affinities are diagonal and the IFS is vertically centered. Moreover,
DyW = Dy® =1 and hence d* = D and d~ = 1. In this situation

dvox(G) = A(wy, ..., wy) = max(1, D)

without any further assumptions on the geometrical situation, in agreement with
theorem 3.7.

While we are able to give the generalized dimensions of G, many authors relate
dyox (G) to other constants describing the geometry of G, such as the Holder exponent
[Bed3], the Hausdorff dimension [BU, K, U, GM] or the topological pressure [Bed4,
Bed2]. Some among them confine the diversity of w; to C-SAMFs by setting b; = 0
[GM, GHL, Mal, Ma2, Ma3, BU].
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Example 3.5 (Bold Play) This example is a particular self-affine interpolation
function appearing in probability theory .

Imagine a game where the chance to double the stake is p and the probability
to loose it is 1 — p. Then M(z) represents the probability to win the amount 1
starting with the capital z and observing the following strategy: if the momentary
stake is © < 1/2, then the player wagers all, if # > 1/2 he wagers 1 — 2. What
makes M(z) interesting is its comparison with the probability to win with ‘timid
play’, which means to wager the same small amount ¢ each time. While the latter
promises a rather long stay at the casino, the chance to leave the place with the
desired amount of money is incredibly larger when applying the first one [Fed, p
190]: betting ‘black’ in ordinary American roulette, p is given as 18/38. Trying to
reach the goal of $20'000 with an initial capital of $100 by wagering $1 each time,
the probability of success is approximately 3-107°!, wagering less ‘timidly’ $10 each
time increases the chance to 107°! still completely negligible. But the chance to
win with ‘bold play’ is 0.003!

However, the function M satisfies

U( )_ p-ﬂ[(?l) ifI<1/27
=Y pr-p) M —1) iz >1/2,

and its graph G is invariant under the two diagonal contractions w; (z,y) =(z/2,p-y),
wy(z,y) = (z/2+1/2,(1 = p)y + p). The IFS is centered vertically as well as
horizontally with respect to the open sets |0, 1[x]—1, 3] and |—1,3[x]0, 1]. Supplying
the TFS with the ‘natural’ probabilities p; = p, ps = 1 — p leads to

7= TW() = log(pf+(1-p)7)/log2
v o= T(Q)(q) = l—q

Thus v* < TO(q) + TA(q) iff T®(g) > 0, hence iff ¢ < 1. Furthermore, y* < v~

Figure 3.16: On the left the generalized dimensions and on the right the spectrum
of the graph of the ‘bold play-function with p = 1/4 (see Ex. 3.5).

iff g € [0,1]. The test concerning I'" reduces to plogp+ (1 —p)log(1—p)+log2 > 0,
which is true independently of ¢. So lemma 3.18 gives

T( ) — Inax('y*,'y’) lfq S 17 _ ,‘//+ lfq S 0,\
9= min(y*t,y7) ifg>1, [ |y ifg>0.
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Since T is not differentiable at zero there is a gap in the a-interval where the
spectrum is not determined by T'.

The invariant set G is the graph of the continuous function M and of total length 2.
Moreover, M is almost everywhere differentiable with slope zero [Fed, p. 191]. For
p = 1/2 the spectrum reduces to a point and M to a linear function. In this sense
F(a) reveals the ‘nondifferentiability” of the invariant function M. This is due to
the choice p; = v;, interweaving geometry and measure. O

The last example provides an ordered SAMF for which T'(q) can explicitly be cal-
culated for ¢ > 0, although its projections are not self-similar.

Example 3.6 (Rosette)
Consider the maps

(/2,9/2-1/2)
(/2,9/2+1/2)

= (x/2_1/2ay/4) w?(ray)

=
=
<
EE
|

with the round set O = {(z,y) : |z + |y| < 1}. Choose p; = py = 1/4, p, = p and
pi=1/2-p.

Figure 3.17: The construction of the rosette (see Ex. 3.6).

First 1) is investigated. Since wy") and w,") coincide lemma 3.3 implies

r—=12z x+1

— ——:1/4,1/2,1/4).
L LRTEAT

= <’“/’1(l)7 ws™, w3 1, po +p4,p3) =

This allows the calculation of T although the construction of u(!) is overlapping.
Denoting the normalized Lebesgue measure of IR? restricted to O by 7, ulV) is
recognized as the projection (Y77 of 7i: just note that 7i is invariant under (v, y) =
(2/2,y/2) + (u;,v;) with entries (u;, v;) = (—1/2,0), (0,-1/2), (1/2,0), (0,1/2) and
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Figure 3.18: The rosette as defined in example 3.6 on the left. To emphasize the
concentration of this measure near the horizontal parts, a multifractal is provided
on the right, which is based on the same IFS but with probabilities p; according to
the Jacobians of the maps (i.e. py = ps = 1/6, py = py = 1/3). This results in a
‘homogeneous’ distribution.

with probabilities p; = 1/4. Consequently the singularity exponents of u!) are
identical with the one of (V).

Let 6, = 27" and take B = [k -4, (k + 1)0,[ with an integer k € {-2",...,2" —1}.
These sets B are the ,-boxes with nonvanishing p()-measure. For 0 < k < 2" =1

#(1)((3)1) = ﬁ([(k71)6n7 (k+2)6n[X]R) = Sén'(lf(k+1/2)6n) = 36n2(2n7k71/2)7

for k = 0: pV((B),) = 36,2(2" — 2/3) and for k = 2" — 1. xV((B),) = 26,%. For
negative k replace k by |k|. First we observe that 6,2 < u)((B);) < 36,". Thus the
semispectra are trivial for o outside [1,2]. Omitting the three boxes corresponding
to k= —2",0,2" — 1 will not affect the rest of this calculation. For a €]1,2[ one
finds
pD((B)) < 8,2 @ 2" =) /3 _1/2 < |k| < 2" =1
which is satisfied by 2 - |22~ /3 — 2| integers k. Thus
B . log M;, (a)
1) = oW\ 9y

(FY) () = lim “logd, 2—-a.
Similar pM((B);) > 6," is satisfied by approximately 2" — 2°2-2)/3 integers k
leading to

(FD)*(a) = lim log N, ()

=1
noo  — log 6n

Proposition 1.10 implies

FY(a) = limlim

log(NWs(a+e) - NUsa—e)) [ 2-a ifae]l,2]
210 610 —logd B

—oo  otherwise,
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. , P ’ Rl
4 o v

Figure 3.19: The generalized dimensions and the spectrum of u") of the ‘rosette’
multifractal (see Ex. 3.6).

By lemma 1.16 T is grid-regular satisfying

1—q ifg>-1,
—2¢ otherwise.

1) -

The spectrum of () is not strictly concave and so T()(g) carries not all the infor-
mation about the singularities of () (see Fig. 3.19).
Now let us turn to p itself. Straightforward calculation yields

.| 3=3q+1og (y/h2(q) + 2%~ h(g)) /log(1/2) if g > -1,
| 2 g+ log (/R2(g) + 24 — h(g)) /Tog(1/2) otherwise,

where h(g) = p? + (1/2 — p)? for short. Since i is an ordered SAMF corollary 3.2
and proposition 3.16 yield

T =7" (420, T@<y" (¢<0)

and T is at least grid-regular for ¢ > 0. Theorem 1.1 gives the increasing part of
the spectrum F(«) including the maximal value (see Fig. 3.20).

Figure 3.20: On the left the function I'(q)/(1 — ¢) and on the right its Legendre
transform for the ‘rosette’ with p = 1/4. They equal the generalized dimensions for
positive q resp. the spectrum in the rising part.
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Finally note that (3.30) selects the maps w; and w; and that (3.32) holds. Indeed w,
and wj press the measure towards the z(V-axis, which has dimension 1 = F(Dy,).

On the other hand, the construction of the invariant set K" = (wy, wy) is certainly
performed only by boxes with y(B) = §%. Since we expect them to be the only ones
of this kind we conjecture F(D_y) = 1. This value is considerably smaller than 1.45,
obtained from the Legendre transform of I'(¢)/(1 — ¢). Thus, when F(D_y) =1
were indeed true, the upper bound I' of T had to be strict for some negative ¢, and
‘centered’ would be a necessary precondition in theorem 3.3. O

3.6 Conclusions. Outlook.
Our conclusions are summarized in a short survey.

o The generalized dimensions d, introduced and applied in [Fale4, Grl, HJKPS,
HP] usually take the irrelevant value oo for negative ¢ (see Ex. 1.1). Since cer-
tain multifractals develop interesting generalized dimensions only for negative
¢ (Ex. 3.5), it is important to have a new method of measuring the singularities
of a multifractal.

One essential relation in multifractal formalism is the connection of spectrum
and generalized dimensions through the Legendre transformation. However,
the formalism in [Falcd] requires the existence of the double limes f(a) for
all . Even with the most simple multifractal (Ex. 1.1) this double limes
fails to exist for large a.. To solve this problem we introduce the semispectra:
they are easy to handle and have almost the same properties as the spectrum
itself (Prop. 1.8, 1.10 and 1.15). Moreover, it is possible to obtain the spectrum
from the singularity exponents without assuming anything about it in advance
(theorems 1.1 and 1.2).

As is demonstrated with most of the examples, the semispectra as well as
the singularity exponents very often allow to compute the whole spectrum
F. In particular examples, however, F' may carry more detailed information
(Ex. 2.15 and 2.16).

The new formalism allows to give a rigorous proof for the well known formula
for the singularity exponents of self-similar measures, including negative .

The self-affine multifractals presented under the name C-SAMF reveal fea-
tures of multifractal spectra different from the ones of self-similar measures.
Hence they provide a greater diversity as models for objects found in nature.
Moreover, we consider C-SAMFs to be important, since they allow the study
of several topics such as the product of self-similar measures, local Holder
exponents and other features. See section 3.5.
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We provide multifractals with atypical spectra. They show that F' need not
be concave and that it may possess wedges or linear parts. Furthermore, T(q)
is not necessarily differentiable, or can be once but not twice continuously
differentiable (Ex. 2.15, 2.16, 2.17, 3.3, 3.5 and 3.6). Finally, infinite singularity
exponents are found for all negative ¢ with the left-sided spectra (Ex. 2.14).
For further constructed examples of this kind as well as for observations in
nature see [MEH, ME, CJVP]. Exponential dimensions [GA], carefully defined
in order not to reflect wrong measurement (Ex. 1.1) may turn out to be the
rightly chosen formalism here.

The interpretation of F(a) as the dimension of the set ‘with Holder exponent
' is valid for certain self-similar measures (Ex. 2.10 and 2.11). For general
multifractals, however, this matter is far from trivial. At least we are able
to provide evidence especially for the ‘most rarefied’” and the ‘most probable’
points (section 3.5).

As a straightforward generalization of the present work we mention the IFS
consisting of contractive affinities in R?, which leave two given, complementary
subspaces invariant and which reduce to similarities therein. Such TFS are
applied to obtain fractal interpolation surfaces [GH2, BEHM].

Finally, the present work may influence the investigations of randomly gener-
ated measures [A, Falc2, Z, Graf] and of Recurrent IFS [B, BEH, Bed2, GH2].
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