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Abstract—This paper addresses the dynamics of broadcast
flooding in random wireless ad hoc networks. In particular, we
study the subset of nodes covered by a flood as well as timing
issues related to the first (latency) and the last time (duration of
back-chatter) at which a broadcast is received by a fixed node.
Notably, this analysis takes into account the MAC-layer as well
as background traffic which both are often neglected in related
studies.

Assuming a protocol model for the transmission channel
which accounts for carrier sensing and interference, we find
bounds for the probability of survival of the flood and for its
coverage probabilities. Moreover, under certain conditions on
the parameters, we establish asymptotical linear bounds on the
latency as the distance from the origin of the flood increases
and show that the duration of the back-chatter is stochastically
bounded. The analytical results are compared to simulation.

I. INTRODUCTION

Broadcast is one of the basic functionalities in mobile
wireless Ad Hoc networks. Many routing protocols employ
broadcast for establishing new routes in mobile environment;
examples include Dynamic Source Routing (DSR), Ad hoc
On-demand Distance Vector (AODV), Zone Routing Protocol
(ZRP), and Location Aided Routing (LAR) [1]. In addition,
it is commonly used in network self-configuration and data
gathering. In a mobile setting, updates based on broadcast
should take place frequently to keep the network functioning.
In some alarm networks, all point-to-point communications
may be based on broadcast.

The most simple broadcast mechanism is flooding where
any node receiving the broadcast packet forwards it to all
its neighbors. Flooding is known to work fine in sparse and
moderately dense networks. On the other hand, redundancy,
collisions and contention constitute serious issues in highly
dense networks, first addressed under the name broadcast
storm problem by Ni et al. [2]. Several schemes have been
proposed to avoid the broadcast storm problem. These usually
include building a broadcast backbone, i.e., only a subset of
the nodes forward the packet (see [3], [4] for references).

If not operating in an extremely dense network, one may
ask if the optimization to decrease redundancy, collisions and
contention really pays off. In very dynamic mobile environ-
ments, the effort to build a “nearly optimal” backbone has to
be invested repeatedly, which adds to overhead and latency,

whereas by flooding a broadcast packet would spread approx-
imately as fast and sometimes even more reliably [3], [5].
Moreover, it should also be noticed that some of the backbone
based schemes require that the node location information is
first gathered by flooding.

The packets of a flood, i.e., the broadcast packets are treated
differently than unicast packets in the MAC layer. A broadcast
packet is usually sent to all neighbors simultaneously. Under
the IEEE MAC 802.11 Distributed Coordination Function
(DCF) [6], broadcast transmissions are implemented so that
the broadcast packets are sent to the neighbors as soon as the
radio channel is sensed to be free (carrier sensing). However,
no collision detection is used to guarantee successful receipt
of the packets at the destination nodes. Some studies have
suggested reliable MAC designs for broadcast transmission
[7], [8], [9], [10]. These schemes, however, add a large
overhead to the MAC layer and have not been applied in the
current standards.

We have found only one previous work analytically studying
flooding in ad hoc networks. Viswanath and Obraczka [11]
model the MAC layer by considering a constant probability
for successful transmissions and analyze the survivability of
flooding by applying Markov chain techniques. Unfortunately,
their method does not capture well the geometric properties
of flooding.

The main goal of this paper is to analyze behavior of
broadcast flooding in sparse and moderately dense networks
under light to moderate background traffic. According to our
knowledge, this is the first time when MAC and background
traffic are taken into account in an analytical study of flooding.
The analysis is based on percolation theory, an approach
pioneered in the context of Ad Hoc networks by Dousse,
Franceschetti, Thiran, et al. (see [12], [13], [14]).

The contributions of the paper are the following:
• We introduce a new communication model for wireless

Ad Hoc networks. The model takes into account carrier
sensing and interference caused by background traffic;

• We derive bounds for the survivability and coverage prob-
abilities. The bounds depend on the underlying percola-
tion functions which can be numerically approximated;

• We derive characterizations of latency and back-chatter,
i.e., the times to first and last reception of the broadcast
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Fig. 1. Illustration of the communication model. Transmitting nodes are
represented by filled, black circles, all other nodes, receiving or idle, by circles
(not filled). An “X” inside a circle indicates a collision at that receiving node.
For the sending node close to the middle, the circles of radii RC > RT >
RF (RF dashed) are drawn as well as dashed lines for failing and solid lines
for successful transmissions. For the other transmitting nodes gray disks of
radius RI are indicated.

at a given node. Latency behaves linearly as the distance
to the origin of the broadcast increases and back-chatter
is stochastically bounded by a finite random variable.

• The analytical results are compared to ns-2 simulations.

The remainder of the paper is organized as follows. The
channel model and the overall setting is described in Section
II. In Section III, bounds for survivability and coverage prob-
abilities are derived. Latency and back-chatter are analyzed in
Section IV. In Section V, ns2 simulations are presented. The
paper is concluded in Section VI.

II. SETTING

In the following we set the stage for our analysis: we explain
the models used for network, background traffic and broadcast,
and recall the basics of continuum percolation.

A. Network Model

Throughout the paper we consider an infinite planar network
where the locations of the nodes are defined by a Poisson point
process in R2 with a homogeneous finite intensity λ. By this
we mean that the number of nodes lying in a measurable set
A with area |A| is a Poisson random variable with mean λ·|A|
and is independent of the node locations outside A.

B. Communication model

We consider a communication model parameterized by
transmission range RT , carrier sensing range RC and inter-
ference range RI . The model imposes that at any time, for any
sending node S and any non-sending node D the following
conditions hold:

M1 (Carrier sensing) All simultaneously transmitting nodes
are at least at a distance RC from S.

M2 (Out of range) If D is at a distance larger than RT from
S then it can not receive the transmission from S.

M3 (Interference) If there is a third node within a distance RI

of D which transmits at the same time then a collision
occurs and D can not receive the transmission from S.

M4 (Successful transmission) The transmission of S is suc-
cessfully received at D if both, M2 and M3 fail.

Let us elaborate now on natural constraints between the
parameters. Naturally, if two nodes are close enough to com-
municate with each other, then they should cause interference
to each other as well; similarly, when they are close enough
to interfere with each other then carrier sensing should be
able to indicate the interference. Therefore, we assume that
RT < RI < RC . Consequently, there is a collision-free disk
around each node with radius

RF
.= min {RT , RC − RI} ,

i.e., once a node has its turn to transmit, all the nodes inside
the disk of radius RF will receive the message correctly,
irrespective of any other simultaneous transmissions allowed
by the MAC layer. Note, that some nodes outside the collision
free disc may receive the message as well. The communication
model is illustrated in Fig. 1.

Comparing with other existing channel models can further
instruct a sensible choice of the parameters. The channel
model based on the Signal to Noise plus Interference Ratio
(SINR-model, see e.g. [15]) can be used as such a reference
model. In the SINR-model, node Xi can transmit to node Xj

if
P�(|Xi − Xj |)

N0 + γ
∑

k∈I\i

P�(|Xk − Xj |) ≥ β,

where P is the transmission power, � is an attenuation func-
tion, N0 is the ambient noise, γ is a protocol parameter, I
is the set of all currently transmitting nodes and β is a given
threshold. Now, the carrier sensing can be implemented in such
way that node Xi may send a packet only if

N0 + γ
∑

k∈I\i

P�(|Xk − Xi|) ≤ ξ,

where ξ > N0.
Notably, in the SINR-model regions of transmission, carrier

sensing and interference are typically not circular. In fact they
may depend on the locations of all nodes and have different
shapes around each node. However, the SINR-model implies
constraints which the parameters RT and RC must satisfy.
Assuming a non-increasing attenuation �, we have

RT ≤ �−1(Noβ/P ), (1)

RC ≥ �−1

(
ξ − N0

γP

)
. (2)

The right hand side of the inequality (1) is the maximum trans-
mission range assuming that all nodes, except the transmitting
node, are idle. The inequality (2) is based on the scenario of
one transmitting node and one interfering node. The inference
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range RI depends on RT , but without further knowledge on
the node locations, it could be chosen to be anything between
0 and ∞.

C. Broadcast communications

We assume that broadcast flooding is implemented as fol-
lows:

• Once a node has received a broadcast message for the first
time, it retransmits the packet to its neighbors as soon as
the radio channel is found to be free (carrier sensing). No
further action is taken.

• Notably, if the same message is later heard again, it is
not re-sent.

• Also, no collision detection is used. Thus, the broadcast
is received exactly by the nodes within range and without
interference, as specified in the channel model.

This corresponds to the implementation in IEEE 802.11.

D. Traffic and MAC layer

For some results we require the following assumptions on
the MAC layer and the network traffic (i.e., broadcast and
background traffic together):
A1 (Global capacity): The overall traffic load does not exceed

the capacity of the network.
A2 (Local capacity): The backlog is bounded almost surely

at each node.
A3 (Contention): The waiting time in the MAC layer is

bounded almost surely.
Assumption A1 is natural as we are only interested in

moderately loaded networks. For a discussion on the broadcast
capacity of wireless ad hoc networks see [16]. Assumption
A2 means that forwarding the broadcast message together
with background traffic does not locally exceed the network
capacity. Assumption A3 says that once the packet is in the
front of a MAC queue, it is sent in a bounded time (i.e.,
the neighboring nodes should not keep the channel reserved
arbitrarily long).

Some comments on the interpretation of assumptions A2
and A3 are in order. These conditions would be satisfied if
the local node density were bounded from above, a property
that does, unfortunately, not hold in our case. Indeed, A2
and A3 are in conflict with our infinite Poisson point model
for the network: Since the number of nodes in any area is
a Poisson random variable and can assume arbitrarily large
values, we may see arbitrarily large local node densities in a
typical realization of the network. Thus, there is no bound for
the number of neighbors who can claim the channel and delay
a transmission.

The restrictions on the background traffic portion imposed
by A2 and A3 can be interpreted as the requirement that
it stays bounded independently of the underlying local node
density. For example, a random point-to-point transmission per
time unit in each fixed sized cell would satisfy that. As for the
broadcast portion the restrictions imposed by assumptions A2
and A3 could be interpreted as a model saying that some of
the broadcast packets are dropped by timeouts in the areas of

high node density. In most cases, this would not change the
propagation of the broadcast at all: the neighbors of the node
who dropped the broadcast packet would have neglected the
packet anyway because they received it earlier from elsewhere.

E. Poisson Boolean model (PBM)

In the Poisson Boolean model (also known as continuum
percolation), the locations of the so-called “grains” are given
by the points {Xi} of a stationary Poisson point process
in R

d of intensity λ (see e.g. [17], [18]). In this paper, we
only consider R

2 and disk shaped grains. Then we define the
occupied component or occupied set Bλ(R) as the union of
the grains, i.e., in our case the union of randomly scattered
disks B(Xi, Ri) centered at Xi and of radius Ri (see Fig. 2):

Bλ(R) .=
⋃
i

B(Xi, Ri). (3)

Note, that the Ri are assumed to be i.i.d., independent of the
point process {Xi}, and distributed as R.
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Fig. 2. Poisson Boolean model in R
2. Subcritical intensity on the left and

supercritical intensity on the right.

The occupied set can be divided into disjoint clusters each
of which is formed by overlapping disks. One way to measure
the global connectivity is the size of the largest cluster. Let
us denote θλ(R) the probability that the origin belongs to an
unbounded cluster. Then, the critical intensity can be defined
by

λc(R) .= inf{λ : θλ(R) > 0}.
Under quite weak1 assumptions, the critical intensity satisfies
0 < λc < ∞. In addition, for any supercritical intensity, i.e.,
λ > λc, the largest connected component is unbounded almost
surely (a.s.). Moreover, the infinite cluster is then unique a.s.
On the other hand, if the intensity is subcritical, i.e., λ < λc,
all the connected components are finite a.s.

Neither θλ(R) nor λc possess known analytical expression.
However, it is relatively easy to numerically estimate them. It
is known, e.g., that λcr

2 ≈ 0.37 for R = r a.s. (see, e.g., [19],
[20]). In particular, when setting r = RT /2, we find the well-
known fact that the mean number of neighbors must be larger
than 4.6 in order to guarantee an unbounded communication
network. For more details related to percolation in the Poisson
Boolean model setting see [18].

1For dimension d ≥ 2, e.g., assume E [R2d−1] < ∞.
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III. SPREAD OF BROADCAST FLOODING

Primary metrics reflecting broadcast performance concern
how far it spreads. We discuss here two crucial metrics, one
novel and one already studied: survivability and coverage. We
start by defining terms and then establish useful bounds.

A. Metrics for Broadcast Spread

Since collision detection is not used in broadcast, there is
no guarantee that all nodes receive the message even if the
network was fully connected. Indeed, in our model carrier
sensing does not protect from interference, a phenomenon
called the hidden terminal problem, unless the carrier sensing
range is sufficiently large compared to the interference range,
then RF = RT (see Fig. 1).

Collisions may result in “holes”, i.e., nodes which do
not receive a broadcast packet at all, or even extinction of
the broadcast. The severity of the phenomenon depends on
network topology, MAC protocol and characteristics of the
background traffic.

To address the severeness of collisions we study the broad-
cast coverage which denotes the long-term average proportion
of the nodes which will receive the broadcast packet. We
also introduce the concept of broadcast survival by which
we mean the event that an infinite number of nodes receive
the broadcast eventually. Otherwise, if only a finite number
receive the message, we say that the broadcast dies out.
Clearly, this second concept is tailored to infinite networks: in
finite networks a broadcast can not survive in the above sense
and, thus, the concept is not relevant. For infinite networks,
however, survival constitutes a central condition without which
other measures become irrelevant, as we will see.

B. Broadcast Survival

We study broadcast survival exploiting percolation theory.
More precisely, we compare our channel model to a simple
connection model where any nodes within a fixed, non-random
communication range R can receive messages from each other.
In particular, the model assumes that there are no collisions.
Then, the clusters of the occupied set of the corresponding
Poisson Boolean model Bλ(R/2) are exactly the set of nodes
which can receive a broadcast from each other under this
simple connection model. This observation leads to bounds
on the survival probability of the broadcast as follows.

If the intensity λ is supercritical, i.e., λ > λc(R/2), let
θ̃λ(R/2) be the probability that a random node belongs to
the unbounded component (which exists and is unique almost
surely). In other words, θ̃λ(R/2) is the fraction of network
nodes which belong to the infinite cluster. For the sake of
definiteness we set θ̃λ(R/2) = 0 if λ < λc(R/2).

Theorem 1: Assume that a broadcast is originated by a
randomly picked node. Then,

θ̃λ(RF /2) ≤ P(Broadcast Survival) ≤ θ̃λ(RT /2). (4)

for any background traffic and any broadcast packet length.

Proof: We start with a useful observation, as alluded
above. Consider a collision-free broadcast flooding in a net-
work defined by a Poisson Boolean model with radius R/2.
A broadcast will survive if and only if it is originated by a
node belonging to the unbounded connected component. This
event has probability θ̃λ(R/2).

Due to the transmission range (M2) and interference (M3),
every broadcast that survives under our channel model must
survive in the simple PBM connection model which assumes
no collisions and uses the transmission range RT as radius.
In other words, a broadcast surviving under our channel
model must originate in the infinite cluster of Bλ(RT /2). The
probability of this happening is the upper bound of (4).

On the other hand, due to carrier sensing (M1), each node
can forward the message under our model without collisions
inside a disk of radius RF . Thus, the broadcast will survive
under our channel model whenever it survives under the PBM
using the collision-free radius, i.e., whenever it originates
inside the unbounded component of Bλ(RF /2), independently
to traffic load and packet sizes.

Due to its relevance in this as well as in several later
arguments we call the PBM based on the collision-free radius
RF the collision-free PBM and Bλ(RF /2) the collision-free
occupied set. Note that for this radius the transmissions from
grain to grain do not experience any collision under our
channel model (M1-M4) by definition of RF .

The proof of Theorem 1 explains why the broadcast often
dies out during the first steps. If a broadcast is started in a
bounded component of Bλ(RT /2), there is no path out of the
component by (M2) and the broadcast can reach only small,
i.e, finite number of nodes. On the other hand, consider the
case where a broadcast is started in a bounded component
of the collision-free occupied set Bλ(RF /2) and assume that
this component is connected to the unbounded collision-free
component via nodes in Bλ(RT /2) (the white nodes shown in
Fig. 3 are such), then collisions can kill the broadcast before
it reaches the collision-free unbounded component. Typically,
this happens in the beginning when breaking only a few
links already stops the broadcast. The longer the broadcast
has survived the more likely it has reached the collision-free
unbounded component of the network.

Note 1 (The case RF = 0.): Broadcast may survive also
when RF = 0 or λ ∈ (λc(RT /2), λc(RF /2). If the broadcast
packet is small, then during its retransmission there are only
few “nicely” spread interfering nodes because of the carrier
sensing. Thus, the number of nodes receiving the message
remains large enough to help the broadcast to survive. On the
other hand, if the transmitted packet is very long and there is
high volume of background traffic, almost all possible sources
of interference can be active during the transmission and the
extinction of the broadcast is almost certain.

Note 2 (Grid networks): Assuming that the node are lo-
cated on a grid and that there is no background traffic, it is
easy to show that a broadcast will always survive under our
channel model: at the “broadcast boundary” there are always
receiving nodes which do not suffer from the hidden terminal
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problem. Even in this simple case, holes can appear because
of self-collisions of the broadcast.

C. Broadcast Coverage

Let us start by remarking that node density has a strong
effect on coverage. In a dense network, there are multiple paths
leading from the broadcast origin to each node. In order for
a node not to receive the broadcast all of those paths have to
fail due to collisions. However, one should avoid considering
extremely dense networks. Indeed, 802.11 MAC cannot handle
the timing if the intensity λ, and thus the average node density
tends to infinity since its implementation is based on a clock
of finite accuracy.

Also, coverage is closely related to survival. For meaningful
results we need to assume survival of the broadcast; otherwise,
if the broadcast dies out, coverage is automatically zero.

Theorem 2: Assume λ > λc(RT /2) and consider a random
node which is picked independently of the origin of the
broadcast. Then,

θ̃λ(RF /2) ≤ P [Node covered |Survival] ≤ θ̃λ(RT /2)

for any background traffic and any broadcast packet length.
Proof: The assumption that the broadcast does not die

out means that it must have been originated inside the infinite
cluster of Bλ(RT /2). Thus the nodes located in the bounded
components of Bλ(RT /2) are certainly holes. This gives us
the upper bound.

To show the lower bound, we can assume that λ >
λc(RF /2), as otherwise θ̃λ(RF /2) = 0. Then Bλ(RF /2)
has an infinite component a.s. and with probability one the
broadcast will cover it: Either the broadcast is started inside
the infinite component of Bλ(RF /2) or one of the (infinitely
many) links leading to the rest of the infinite component in
Bλ(RT /2) will forward the message there. Thus the potential
holes are nodes which are in the bounded components of
Bλ(RF /2).

IV. SPEED OF BROADCAST FLOODING

Having studied broadcast performance in terms of its spread
we now turn to its dynamics. Again we analyze two metrics, a
new and an existing one, namely back-chatter and latency.
As is natural in this context, we consider only the nodes
which will ultimately receive the message, i.e., only the
covered nodes. Moreover, our analysis focuses on asymptotical
behavior so that the results hold only for a surviving broadcast.

A. Broadcast Dynamics: Metrics and Tools

We define latency as the time from the start of a broadcast
to the first reception at a given destination node. The duration
of the back-chatter is the time difference between the first and
last reception at a given destination.

Denote by G(x) the random set consisting of the nodes
which receive the broadcast originating from the node which
is nearest to the location x. Notice that G(x) depends on
the underlying topology, background traffic and MAC. Let
TF (x,y) and TL(x,y) be the first and last time, respectively,

CASE 1a

CASE 1b

CASE 2

Fig. 3. The structure of the communication network. The black nodes
belong to the collision-free “core” C∞(λ, RF ) while the white nodes form
H(λ, RT , RF ). The connections between white and black nodes are not
shown not to overload the picture.

that the broadcast packet is received at the node in G(x) which
is nearest to the location y.

Let C(λ,R) denote the connectivity graph defined by
Bλ(R/2), i.e., its vertices are the centers of the grains in
Bλ(R/2) and edges are drawn between two vertices at dis-
tance at most R from each other. Let C∞(λ,R) denote the
unbounded component of the connectivity graph C(λ,R).

It is useful to consider the nodes which lie in C∞(λ,RT )
but not in C∞(λ,RF ). Let H(λ,RT , RF ) be the graph formed
by these nodes as vertices, with edges between two nodes that
are at most at distance RT from each other. In other words:
Let H(λ,RT , RF ) be the subgraph of C∞(λ,RT ) formed by
deleting all nodes and corresponding edges that lie also in
C∞(λ,RF ).

We distinguish two main cases:
Case 1: H(λ,RT , RF ) has only bounded components;
Case 2: H(λ,RT , RF ) has unbounded components.

Case 1 contains two subclasses depending whether the edges
of the connectivity graphs H(λ,RT , RF ) and C∞(λ,RF ) do
not cross (1a) or do cross (1b) in Fig. 3. It is an easy exercise
to show that the case (1a) occurs if and only if 1 ≤ RT /RF ≤√

3.
In this paper we derive results mainly for Case 1. Case 2 is

left for future’s research. We conjecture that there is a phase
transition between Case 1 and Case 2, i.e., there exists a critical
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intensity λH
.= λH(RT , RH) and a corresponding critical

transmission range RH
.= RH(λ,RF ) such that whenever

λ > λH (or RT > RH ) Case 2 occurs almost surely. Exploring
such issues is beyond the scope of this paper.

Intuitively speaking, we may think of the nodes in
C∞(λ,RF ) as forming the main collision-free communication
core, where communication is guaranteed not to suffer from
collision due to carrier sensing (M1). The nodes in this core
are connected over a distance less than RF , but under suitable
traffic condition the communication distance can be up RT .
The nodes and components of H(λ,RT , RF ) can then be
thought of as some kind of sideroads, sometimes short-cutting
and speeding the broadcast up, but always without any service
guarantees.

B. Latency

Let us first consider latency in a collision-free network.
Lemma 1: Assume A1–A3, a fixed transmission range R

and an idealistic MAC without collisions. If λ > λc(R/2)
and the nearest node to the origin belongs to C∞(λ,R), then
for a fixed y with |y| = 1 there exists finite strictly positive
constants η(λ,R) and γ(λ,R) such that

γ(λ,R) ≥ TF (0, ay)
|ay| ≥ η(λ,R) a.s.

whenever a is large enough.
Note that the constants γ(λ,R) and η(λ,R) are different if

the backlog and contention bounds are changed.
Proof: This is a straightforward modification of a proof

in [21, Thm. 1]. To get a lower bound, we assume that neither
backlog nor contention exist. Then the packet is forwarded
instantaneously and the delay at each node is the (constant)
transmission time. For an upper bound, we can assume that the
packet stays at each node the maximal backlog and contention
durations, which both are bounded almost surely.

The next theorem is the main result of this section. It gives
conditions under which the propagation speed of flooding is
asymptotically linear.

Theorem 3: Assume A1–A3 and Case 1. If a broadcast
originating from the nearest point to the origin does not die
out and λ > λc(RF /2), then there exist finite strictly positive
constants η = η(λ,RT , RI , RC) and γ = γ(λ,RT , RI , RC)
such that for a fixed y with |y| = 1

γ ≥ TF(0, ay)
|ay| ≥ η a.s., (5)

whenever a is large enough.
Proof: (Sketch) Upper bound. Consider the Poisson

Boolean model Bλ(RF /2) and assume that the source (the
nearest node to the origin) and the destination (the nearest
node to ay in G(0)) are not in C∞(λ,RF ) (the collision free
unbounded component). Then the random variable TF(0, ay)
can be bounded by a sum of the following three terms (see
Fig. 4):

1) Time until the nearest node to the origin in the un-
bounded collision free component receives the message.

origin
ay

x
x

Source DestinationNeareast nodes in the collision free cluster

Fig. 4. Constructing a bound for latency: the black nodes form the unbounded
cluster of Bλ(RF /2) and white nodes belong to the unbounded cluster of
Bλ(RT /2). The connections between black and white nodes are not shown
in the picture.

In Case 1, the number of nodes of H(λ,RT , RF ) which
can forward the message until it enters C∞(λ,RF ) is
finite. The Euclidean distance between the point where
the message enters C∞(λ,RF ) and location of the
nearest node to the origin in C∞(λ,RF ) is thus finite.
By finite delays at each node and [21, Prop. 4]), it takes
a finite time until the nearest node of C∞(λ,RF ) to the
origin receives the message.

2) Time to “travel” from the neighborhood of the origin
to the neighborhood of ay on C∞(λ,RF ). Lemma 1
describes asymptotics of the latency between the nodes
in the unbounded collision free component nearest to
the origin and the node nearest to point ay.

3) Time until the message propagates from the collision free
component to the destination. Analogously to 1, all the
exit points from C∞(λ,RF ) to the bounded component
of H(λ,RT , RF ) containing the destination node are
located at finite distances from the nearest point to ay
in C∞(λ,RF ).

All the above reasonings are with probability one. As dura-
tion of 1) and 3) are finite (and asymptotically independent),
only 2) matters asymptotically.

Lower bound. By the assumption of a surviving broadcast,
the nearest node to the origin belongs to C∞(λ,RT ). Because
of collisions, it may happen that the destination node is not
the nearest node to ay in C∞(λ,RT ). Analogous reasoning
as in above, based on boundedness of the components in
H(λ,RT , RF ), shows that asymptotically this does not matter
and a lower bound can be found by considering an ideal MAC
over C∞(λ,RT ) as in the proof of Lemma 1.

The theorem shows that in the worst case the broadcast
can spread only by small steps which are guaranteed by the
collision free radius RF . This can happen even under light
load if the background traffic is bad enough. If the delays
due to contention and background traffic in each node are
approximately (or even asymptotically) independent, a reason-
ing invoking the generalized law of large numbers shows that
increasing the traffic load makes both bounds larger. This also
seen in the simulations.
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Note 3: If we change setting in such way that source and
destination pairs are always in C∞(λ,RF ), then Theorem 3
holds true also in Case 2.

Note 4: Latency has an “asymptotic independence of the
density” if no background traffic is present. Due to carrier
sensing, the density of active nodes at a time point cannot be
arbitrary high. Even in medium dense networks, most of the
nodes are idle.

C. Back-chatter

Back-chatter period is the time interval between the first and
last hear of the same broadcast message at a given location.
The length of the back-chatter is defined

TB(x,y) .= TL(x,y) − TF (x,y).

The number of times a broadcast message received by
a node is bounded by the number of neighbors. Due to
background traffic and collisions it could happen that some
of the neighboring nodes receive the message much later. A
direct application of Theorem 3 implies that the duration of
back-chatter cannot increase faster than linearly, i.e., under
Case 1

lim
a→∞

TB(0, ay)
|ay| ≤ γ − η a.s..

The following theorem shows that the linear growth bound is
overly pessimistic and the length of back-chatter is bounded
by a finite random variable.

Theorem 4: Assume A1–A3, Case 1, λ > λc(RF /2) and a
surviving broadcast flooding. Then there exist a finite random
variable M

.= M(λ,RT , RF ) such that for any x and y in
R

2,

TB(x,y)
distr≤ M.

Proof: Consider first an arbitrary node Y and the
(bounded) components of H(λ,RT , RF ) that are at most RT

away from node Y . Let BY denote the union of the nodes in
these components and #BY the number of nodes in BY . The
surrounding C∞(λ,RF ) nodes are contained in set

AY = {z ∈ C∞(λ,RF ) : ∃w ∈ BY ∪ Y s.t. |z − w| ≤ RT }
If all nodes of AY have retransmitted the broadcast packet,
we can be sure that the message cannot enter later in the
bounded components of H(λ,RT , RF ) in the neighborhood
of Y (which is BY ).

If a node Y in C∞(λ,RF ) has received a broadcast
message, then any finite subset of C∞(λ,RF ) will hear
the message in a finite time almost surely. Assuming that
the broadcast starts at Y , communication occurs only on
C∞(λ,RF ) and each transmission takes the maximum time
(dmax), then we denote the time till all nodes in A have
received and retransmitted the message by S(Y,A). Note that
some paths may need to visit outside of set A.

If node Y in H(λ,RT , RF ) has received the broadcast
message, then one of the surrounding C∞(λ,RF ) nodes must
have received it earlier, because the destination node is in an
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Fig. 5. Survivability in a sparse network with high background load.
Simulations are done with 700 nodes in an area of 4 km × 4 km.

isolated component of H(λ,RT , RF ). We denote this node by
Ỹ . Clearly BỸ ⊃ BY and AỸ ⊃ AY .

Let Yy be the nearest node to y. If Yy in C∞(λ,RF ), we
denote Yy = Ỹy . Then

TB(x,y) ≤ S(Y,AỸy
) + dmax#BỸy

distr= S(0, AỸ0
) + dmax#BỸ0

= M,

where M is a finite random variable.

V. SIMULATION STUDIES

We employ the NS-2.29 simulator. Nodes are uniformly
distributed in a 4 km by 4 km area and each node has the
default radio range of 250 m. We use the IEEE 802.11b MAC
protocol with basic transmission rate 1Mbps and broadcast
packet size of 125 Bytes. The originating node of broadcast
flooding is in the center of square area. The background traffic
is generated by ”Hello” messages with size of 125 Bytes.

In the simulations, we consider three different node densities
(700, 1600 and 2700 nodes in the square) corresponding to the
mean number of neighbors 8.6, 19.6 and 33.1. Moreover, we
have implemented two background traffic scenarios, light and
high. When changing the density of the network, we keep
the volume of the background traffic per area fixed. Thus the
capacity left for the broadcast does not change. However, in
the denser networks, flooding itself consumes more capacity.

Unfortunately, we were not able to dig into the details of
the ns-2 code and find out how to estimate the interference
and carrier sensing range. Thus the following simulations
demonstrate only the qualitative behavior implicated by the
analytical results.

In Fig. 5, surviving broadcasts are denoted by the bars in
the right and those which died out correspond to the bars near
the origin. In the simulation experiment, broadcast survived
approximately in 90% of cases. This could be compared with
the fraction of nodes in the infinite cluster in the Poisson
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Fig. 6. Latency as a function of Euclidean distance. Simulations with light
and high background loads are shown in each picture.
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Fig. 7. Latency as a function of hop count. Simulations with light and high
background loads are shown in each picture.
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Fig. 8. Duration of back-chatter as a function of distance.

Boolean models Bλ(RT /2) and Bλ(RF /2), with λ = 43.75
and RT = 0.25. By simple numerical simulations one finds
that θ̃λ(RT /2) > 0.99. If the background is very low the
survivability probabilities are very close to one (not shown
here). Whereas with high background traffic (shown in Fig. 5)
the approximation θ̃λ(RF /2) should be used. As mentioned
earlier, we do not know the guaranteed communication range
RF in the ns-2 simulator. By reverse engineering, we estimate
that RI ≤ 0.8RT in this case.

Fig. 6 shows how latency depends on density and back-
ground traffic. The asymptotic linear bounds predicted by
Theorem 3 are clearly seen in the scatter plots. This becomes
especially clear in the two lower pictures in 6 where the
density is higher. The qualitative behavior remains the same
even if latency is plotted as a function of hop count as seen in
Fig. 7. This is no surprise because Euclidean distance predicts
quite accurately the number of hops of a shortest path between
two nodes.

Back-chatter is considered only in the two densest networks.
The simulations illustrated in Fig. 8 and 9 demonstrate that
the length of the back-chatter period stays bounded. However,
one should notice that due to boundary effects the difference
between the first and last reception times could be poorly esti-
mated because in the simulation setting there is no possibility
that the broadcast “returns” from outside the 4 km × 4 km
square.

VI. CONCLUDING REMARKS

We have derived results which enable an informed decision
whether broadcast via flooding is reasonable solution in a
wireless ad hoc network. Assuming that the capacity of the
network is neither globally nor locally exceeded by retrans-
missions and background traffic, flooding usually matches (or
even outperforms) other broadcast mechanisms with respect to
survivability and coverage. Moreover, the asymptotic latency
for flooding is only a constant order from the optimal: indeed it
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Fig. 9. Duration of back-chatter as a function of hop count.

is well-known that a message cannot spread faster than linearly
in geometric networks.

Back-chatter constitutes an obvious waste of bandwidth.
The total back-chatter load, i.e., number of needless retrans-
missions, naturally remains the same everywhere due to the
assumed homogeneity of the network. In principle, the farther
from the origin of a broadcast, the longer the back-chatter can
last. Under some assumptions on the system parameters, our
analysis shows that the length of a back-chatter period stays
stochastically bounded independently of the distance to the
origin.

In addition to characterizing broadcast flooding, the results
of this paper are useful for other broadcast mechanisms. If
a backbone is used for broadcast, e.g., then already a few
collisions may have a severe impact. Since such backbones
are optimized with respect to redundancy, the retransmitting
nodes form a very sparse network which is — in the absence
of collisions detection — vulnerable to collisions caused
by other traffic. Sacrificing some redundancy could increase
robustness against collisions. A rule of thumb could be to
choose a backbone of nodes such that message can spread
along connections of length at most RF .

In this paper, in addition to describing the qualitative
behavior, we have presented the best and worst case per-
formance bounds for broadcast flooding. A natural extension
of the current work would be to show how the averaging
properties based on ergodicity or independence assumptions
on the delays at nodes could be used to improve the bounds.
Unfortunately, one of the problems with percolation based
analysis is that most of the results are only about existence
and the analytical formulae are rarely known.
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