
FRACTALS IN NETWORKING: MODELING AND INFERENCE

R. RIEDI ‡†, A. KESHAVARZ-HADDAD†, S. SARVOTHAM† AND R. BARANIUK†

Departments of Statistics‡ and of Electrical and Computer Engineering†, Rice University
MS-138, 6100 S. Main Street, Houston, Texas 77005. E-mail: riedi@rice.edu

This paper provides some insight into the causes and implications of the complex
small scale dynamics of network traffic loads which are still not fully understood.

Introduction The use of fractal models in computer networking has a strong
tradition (see references in 1). Most prominently, fractional Brownian motion pro-
vides a parsimonious abstraction of aggregate traffic at time scales of a second and
beyond, which is found useful for design and management and which explains the
occurrence of detrimental traffic bursts in terms of user behavior. At time scales
small enough to be relevant for control, queueing and multiplexing, on the other
side, multifractal cascades appear to be more accurate than self-similar models.

Modeling First reports of multifractal scaling in network traffic traces 2 were
quickly followed by models based cascading multiplication such as the Binomial cas-
cade and more recently more general iterative products1. Being parsimonious and
computationally inexpensive these multifractal models proved accessible to analysis
and a welcome alternative to the forbiddingly expensive network simulations.

Inference An application as important as simulation is rooted in the fact that
networks are stateless and not aware of individual connections. For load balancing
and certain rate sensitive applications such as broadcasting, however, a reliable
estimate of the available bandwidth is most useful. Inspired by the task of estimat-
ing parameters on multiple scales, e.g., the tool pathChirp uses efficient trains of
exponentially spaced probe packets. When queued, probes are spaced according to
traffic load arriving between probes, thus allowing to infer the free capacity.

Alpha-beta decomposition Searching for the causes of multifractal bursts
(instances of extreme workload) in traces of aggregate traffic, individual connec-
tions with exceptionally large sending rate were found to be the typical culprit, as
opposed to a “conspiracy” of an exceptional number of connections as predicted by
the classical On-Off model4. Only few in number, the high rate alpha connections
contrast strongly against the large crowd of average beta connections, similar to the
alpha and beta males in the animal kingdom. Notably, there is strong statistical
evidence that alpha connections tend to occur over paths of short response time5.
As a major conclusion, the alpha-beta decomposition of traffic points to the het-
erogeneity in the network topology as the main cause for the multifractal bursts.
Moreover, with only a few connections being potentially harmful and important to
monitor, operating a network with relevant state information becomes feasible.

Alpha-beta traffic modeling First, let us revisit the celebrated On-Off model
for network traffic 4, a process introduced very early by B. Mandelbrot. In this
framework, a traffic source is modelled as being sending traffic at a constant rate
(the On state), or as being silent (the Off state) with heavy tailed durations of
the On and Off states. It is well known that in the limit of an infinite number of
sources the aggregate (sum) of such sources becomes a Gaussian process with LRD,
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converging to fractional Brownian motion at large time scales. On the other hand,
the aggregate of a fixed number of On-Off sources converges to Levy stable motion
in the limit of infinitely fast clock time.

Queuing of alpha-beta traffic With response time being the “clock” of the
transport protocol, Levy motion seems thus one appropriate choice of a model for
the alpha component of the traffic. The large crowd of beta connection with roughly
equal sending rates and “clocks” aggregate convincingly to fractional Brownian mo-
tion. Assuming the scaling parameter H is equal for the Levy and Brownian traffic
components, this sum is again self-similar and allows to apply scaling techniques
from queuing theory 3 as well as the concept of critical time scales which is borrowed
from large deviation theory. Both agree in predicting Pareto queue tail probability,
which is considerably worse than today’s Weibull tails of self-similar queues3.

Alternatively, we may pose the contributions of alpha connections not as a
Levy stable motion but simply as one On-Off source with particularly large rate. A
natural approach to queueing is then to consider the alpha source as reducing the
link capacity. The somewhat involved analysis of the resulting variable-service-rate
queue predicts that the presence of alpha connections has little influence except
when their rate is larger than the bandwidth available with the beta background
traffic in which case the queue tail probability will be Pareto.

Conclusion In measured traffic traces, alpha connection can easily subsume
half of the bandwidth; nevertheless, they appear to operate at a constant yet high
rate. Thus, the On-Off burst model is a closer approximation to the current state
than the self-similar burst model. The above analysis, however, points out the
catastrophic consequences of the “what-if-scenario” where alpha sources become
sufficiently powerful and aggressive to subsume more than the available bandwidth
on a link leading to Pareto laws with extremely large waiting times and surprisingly
high packet drop probabilities.
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